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a b s t r a c t

Extensive studies have shown that mining gene expression data is important for both bioinformatics

research and biomedical applications. However, most existing studies focus only on either co-regulated

gene clusters or emerging patterns. Factually, another analysis scheme, i.e. simultaneously mining

phenotypes and diagnostic genes, is also biologically significant, which has received relative little

attention so far. In this paper, we explore a novel concept of local conserved gene cluster (LC-Cluster) to

address this problem. Specifically, an LC-Cluster contains a subset of genes and a subset of conditions

such that the genes show steady expression values (instead of the coherent pattern rising and falling

synchronously defined by some previous work) only on the subset of conditions but not along all given

conditions. To avoid the exponential growth in subspace search, we further present two efficient

algorithms, namely FALCONER and E-FALCONER, to mine the complete set of maximal LC-Clusters from

gene expression data sets based on enumeration tree. Extensive experiments conducted on both real

gene expression data sets and synthetic data sets show: (1) our approaches are efficient and effective,

(2) our approaches outperform the existing enumeration tree based algorithms, and (3) our approaches

can discover an amount of LC-Clusters, which are potentially of high biological significance.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Clustering gene expression data is an important research
topic in bioinformatics [1–4]. Compared to the traditional
clustering approaches, biclustering algorithms, which perform
simultaneous row–column clustering in a data matrix, are more
suitable for discovering local expression patterns, formed by a
subset of genes across a subset of samples, from gene expression
data.

A series of biclustering methods have been proposed in the
past decade. They all aim to capture ‘‘blocks’’, also called
biclusters, within gene expression matrices, however, since
different model definitions, the internal characteristics of ‘‘blocks’’
vary from model to model. ‘‘Blocks’’ of different structures imply
different biological significance, and thus the corresponding
biclustering algorithms should serve different analyzing purposes
of gene expression data. As such, in this paper, we propose a novel
model, namely LC-Cluster, serving the purpose of simultaneous

mining phenotypes and diagnostic genes, as also known as the cell
phenotype prediction problem [5,6].

Unlike the coherent pattern rising and falling synchronously

defined by some previous work [7–10], given a gene gi, we

say it to be a diagnostic gene if it shows steady expression values

only across a proper subset of samples, say S, instead of all or a
large majority of the samples. We also say gi is local conserved

across S, which may correspond to a specific phenotype. For
example, Fig. 1 gives a simplistic illustration of the gene
expression patterns via a data set of three phenotypes, labeled
as ‘‘Phenotype 1’’, ‘‘Phenotype 2’’, and ‘‘Phenotype 3’’, respectively.
Different from the previous work, which focus on co-regulated
gene clusters or emerging patterns, our primary goal of analy-
zing such data sets is to discover the three classes of the samples
while identifying some subsets of genes manifesting this class
structure without any priori knowledge. Specifically, in Fig. 1,
gene1 is a perfect diagnostic gene and gene2 is an approximate

diagnostic gene since the expression levels of gene1 are equally low
for Phenotype 1, equally high for Phenotype 2 and equally
intermediate for Phenotype 3, however, all cases for gene2 are
approximately.

Obviously, it provides quite valuable hypothesis for biologists
to identify such a group of genes and samples since the samples in
the same cluster probably indicate a specific phenotype while the
genes may suggest all candidates related to the phenotype
[5,6,11]. We call such a cluster a local conserved gene cluster or
an LC-Cluster. Note: at first sight, our investigation is similar
to some early work, such as some existing bicluster models
[7–10,12] or emerging pattern [13,14], but there exist significant
inherent differences between them indeed. The detailed
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explanations crucial to make sense of these differences and
comprehend our work are as follows.

Difference between existing biclusters and LC-Cluster: The
concept of bicluster was introduced by Hartigan [15] and first
applied to gene expression data analysis by Cheng and Church
[12]. Proven very useful at uncovering hidden local structures in
gene expression data [16,17], many biclustering approaches have
been proposed. Some are based on heuristic approaches: Cheng
and Church [12], OPSM [18,16], d�cluster [19] and FLOC [20], etc.
Some are based on tree-structure: p-cluster [7,21], OP-Cluster
[22], Maple [23] and SeqClus [21], etc. Some are based on graph
theory: CAST [24], CLICK [25] and SAMBA [26], etc. There are also
some bicluster-based variants: Plaid model [27], Spectral model
[28], etc.

As aforementioned, different bicluster models should
serve different analyzing purposes of gene expression data,
since different kinds of resulting clusters are of the same
‘‘block’’ appearance but of different internal characteristics. To
differentiate the proposed LC-Cluster from other numerous
biclusters, an elaborate comparison of two representative
bicluster models, i.e. the model of Cheng and Church [12]
(called CC-Cluster) and p-Cluster [7], and LC-Cluster is given
below.

The pioneering CC-Cluster [2] introduced a measure of mean

squared residue, H, to assess the overall homogeneity of a bicluster
ðI; JÞ, which, provably (cf. ANOVA), can be further uniquely defined
by the bicluster variance, ð1=jIjjJjÞ
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The preceding formula provides deep insight into the nature of
CC-Cluster model, which indicates that a bicluster of low mean
squared residue corresponds to a given submatrix of well-
separated row means and/or well-separated column means. This
makes intuitive sense, since the well-separated row means
indicate data is well-organized along rows, the well-separated
column means indicate data is well-organized along columns, and
both well-separated row means and well-separated column
means indicate data is well-organized within the whole bicluster.
However, what Eq. (1) measures is only a macroscopic coherence,

and thus a submatrix of large row variance or large column variance

could also be a possible bicluster captured by the approach of Cheng

and Church [12]. Note: large row variance means the elements in
the corresponding subset of samples are unlikely to have the
similar properties, although it does not affect a perfect bicluster
generated. Consider a special case illustrated in Fig. 2(a), three
genes, i.e. g1, g2 and g3, each of large row variance but the same
pure shifting pattern, form a perfect bicluster of the lowest mean
squared residue, 0, on the given subset of samples, where the
samples could be different phenotypes. Moreover, patterns
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Fig. 1. Examples of the gene expression patterns across three phenotypes. The first three samples, i.e. s12s3, belong to Phenotype 1, the second four samples, i.e. s42s7, to

Phenotype 2 and remainder, s82s10, to Phenotype 3. (a) gene1. (b) gene3. (c) gene5. (d) gene2. (e) gene4. (f) gene6.
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