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a b s t r a c t

This paper is concerned with the stability for static neural networks with time-varying delays. With an

appropriate Lyapunov functional formulated, a new technique is proposed to up bound the derivative of

the Lyapunov functional. A delay-dependent stability criterion is obtained by proving the bound

negative definite with convex combination methods. The delay-dependent stability criterion is simpler

and less conservative than some existing ones. Both delay-independent and delay-dependent criteria

are obtained, which can be checked easily using the recently developed algorithms. Examples are

provided to illustrate the effectiveness and the reduced conservatism of the proposed results.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

During the last decade, recurrent neural networks (RNNs) have
been extensively studied for their successful applications in signal
processing, pattern recognition, associative memory, optimization
problem and other engineering or scientific areas [1–3]. Since
delays frequently occur in RNNs, and they are often a source of
instability and oscillations, considerable attention has been
devoted to stability for RNNs with delays, and some results on
this topic have been reported in the literature. The stability results
can be classified into two types, the delay-independent type
(e.g. [3–7] and reference therein) and the delay-dependent type
[27,28]. Delay-dependent stability results are generally less
conservative than delay-independent ones, especially when the
size of the delay is small.

Based on the difference in basic variables (local field states or
neuron states), RNNs can be divided into static neural networks
and local field networks [18]. For local neural networks, delay-
dependent stability has been developed with considerable
interests. When the neural network involves a constant delay,
delay-dependent results can be found in [10,12–14]. For the case
of time-varying delays delay-dependent criteria were reported in

[8,9,15,16,29]. As far as distributed delays concerned, delay-
dependent stability was addressed in [11,17].

Though the local neural network has been studied thoroughly,
the static neural network has received little attention, with only a
few stability results available. For the static neural network
without delays, stability conditions were proposed in [19], when
the connection weighting matrix is symmetric, while robust
stability analysis was conducted in [20], where an LMI approach
was employed. As for the neural networks with a constant delay, a
Lyapunov functional method was developed to derive a delay-
independent stability criterion [21]. Recently this method was
extended to delay-dependent stability for static neural networks
with time-varying delays. By constructing a Lyapunov functional
and introducing relaxation matrices to estimate the derivative of
the Lyapunov functional, a delay-dependent stability result was
obtained in [30].

In this paper, attention is paid to the stability analysis for static
neural networks with time-varying delays. Based on a new
Lyapunov functional, we propose a novel technique to estimate
the derivative of the Lyapunov functional without introducing a
relaxation matrix. The obtained delay-dependent stability criter-
ion involves few matrices but has less conservatism compared
with some existing ones. It can be applied to any delay whose
derivative is small or large or even unknown. A delay-indepen-
dent criterion is also presented. Both delay-independent and
delay-dependent criteria are expressed in LMIs; therefore they
can be verified with the help of Matlab LMI toolbox. Examples are
given to show the effectiveness and the reduced conservatism of
the derived results.

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2010 Elsevier B.V. All rights reserved.

doi:10.1016/j.neucom.2010.01.006

$This work was partially supported by Shandong Provincial Nature Science

Foundation of China under Grant ZR2009AM018, and by the Science Research

Foundation of Qufu Normal University under Grant XJZ200854.

E-mail address: hanyongshao@163.com

Neurocomputing 73 (2010) 1528–1532

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2010.01.006
mailto:hanyongshao@163.com


ARTICLE IN PRESS

Notation: The notations in this paper are quite standard. For
real symmetric matrices X and Y, the notation XZY (respectively,
X4Y) means that the matrix X�Y is positive semi-definite
(respectively, positive definite). I is the identity matrix with
appropriate dimension, and the superscript ‘‘T’’ represents the
transpose, and the asterisk * is used to denote a matrix that can
be inferred by symmetry. Matrices, if not explicitly stated, are
assumed to have compatible dimensions.

2. Main results

Consider the following recurrent network with time-varying
delays:

_uðtÞ ¼ �AuðtÞþgðWuðt�tðtÞÞþ JÞ

uðtÞ ¼cðtÞ; �trtr0 ð1Þ

where

uðtÞ ¼ ½u1ðtÞ u2ðtÞ � � � unðtÞ�
T

is the state vector associated with the n neutrons;

gðuðtÞÞ ¼ ½g1ðu1ðtÞÞ g2ðu2ðtÞÞ � � � gnðunðtÞÞ�
T

represents the neuron activation function with gð0Þ ¼ 0;
A¼ diagða1; a2; . . . ; anÞ40; W is the delayed connection weigh
matrix; J¼ ½j1 j2 � � � jn�

T is a constant input from outside the
system; the time delay tðtÞ is a time-varying differentiable
function satisfying

0rtðtÞrt

and

_tðtÞrm;

cðtÞ; �trtr0, is the initial condition of system (1).
The following assumption will be made throughout the paper:

Assumption 1. The bounded neuron activation function in (1)
satisfies

0r
giðs1Þ�giðs2Þ

s1�s2
r li ðs1as2Þ; i¼ 1;2; . . . ;n

in which li ði¼ 1;2; . . . ;nÞ are known real constants.

Remark 1. The neural network in the form of (1) is a so-called
static neural network model [18]. Common examples are the
recurrent back-propagation neural networks [22], the optimiza-
tion type networks [23] and the brain-state-in-a-box type
networks [24]. Under the condition that W is invertible and
WA¼ AW ; by means of yðtÞ ¼WuðtÞþ J the static neural network
can be transformed into the other kind, namely the local neural
network

_yðtÞ ¼�AyðtÞþWgðyðt�tðtÞÞÞþAJ ð2Þ

which has been extensively studied in the literature. However,
many static neural networks do not meet this condition, as
pointed out in [21].

Under Assumption 1, there exists an equilibrium point of (1) [2].

Let u� be an equilibrium point of network (1). For simplicity, we

make the following transformation

xðtÞ ¼ uðtÞ�u�

to network (1). Then it becomes

_xðtÞ ¼�AxðtÞþ f ðWxðt�tðtÞÞÞ ð3Þ

xðtÞ ¼jðtÞ; �trtr0

where xðtÞ ¼ ½x1ðtÞ x2ðtÞ � � � xnðtÞ�
T is the state vector of the

transformed system (3); jðtÞ ¼cðtÞ�u� is the initial condition,

and

f ðxðtÞÞ ¼ ½f1ðx1ðtÞÞ f2ðx2ðtÞÞ � � � fnðxnðtÞÞ�
T

with f ðxðtÞÞ ¼ gðxðtÞþu�þ JÞ�gðu�þ JÞ.

It is noted that f ð0Þ ¼ 0 and

0r
fiðs1Þ�fiðs2Þ

s1�s2
r li ðs1as2Þ; i¼ 1;2; . . . ;n: ð4Þ

Obviously neural network (3) admits an equilibrium point xðtÞ � 0

corresponding to the initial condition jðtÞ � 0; �trtr0.

The stability analysis problem addressed in this paper is to

establish some conditions, under which the origin of neural

network (3) is globally asymptotically stable.

To solve this problem, we need the following lemma:

Lemma 1. Gu ([25]) For any symmetric positive definite matrix

M40, scalar g40 and vector function o : ½0; g�-Rn such that the

integrations concerned are well defined, the following inequality

holds:

�Z g

0
oðsÞds

�T
M
�Z g

0
oðsÞds

�
rg

�Z g

0
oðsÞT MoðsÞds

�

The following theorem provides a solvability condition for the

stability analysis problem:

Theorem 1. For given m the origin of neural network (3) with (4) is

globally asymptotically stable, if there exist matrices P40, Q Z0,
Q1Z0 and non-negative diagonal matrices D, T and S such that the

following LMI holds:

F¼

�PA�APþQ1 F12 P 0

� F22 SW 0

� � F33 TSW

� � � �ð1�mÞQ1

2
66664

3
77775o0 ð5Þ

where

S¼ diagðl1; l2; . . . ; lnÞ

F12 ¼�AWT SþWTSD

F22 ¼ Q�2D

F33 ¼�ð1�mÞQ�2T

Proof. Let xtðsÞ ¼ xðtþsÞ; �trsr0, and

S¼ diagðs1; s2; . . . ; snÞ:

Introduce a Lyapunov functional candidate for neural network
(3) as

VðxtÞ ¼ V1ðxtÞþV2ðxtÞþV3ðxtÞ ð6Þ

where

V1ðxtÞ ¼ xðtÞT PxðtÞþ

Z t

t�tðtÞ
xðaÞT Q1xðaÞ da ð7Þ

V2ðxtÞ ¼

Z t

t�tðtÞ
f ðWxðsÞÞT Qf ðWxðsÞÞ ds ð8Þ

V3ðxtÞ ¼ 2
Xn

i ¼ 1

si

Z WixðtÞ

0
fiðsÞ ds ð9Þ

with Wi denoting the ith row of matrix W.
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