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a b s t r a c t

The learning algorithm based on multiresolution analysis (LAMA) is a powerful tool for wavelet

networks. It has many advantages over other algorithms, but it seldom does well in the learning of

nonuniform data. A new algorithm is proposed to solve this problem, which develops from the learning

algorithm based on sampling theory (LAST). From the good concentration of wavelet energy, we discuss

the approximation capacity of wavelet network in the local domain when the training data are not

dense enough. From this discussion, the new algorithm is realized by the iterative application of LAST.

The corresponding theorems based on the sampling theory are also proposed to prove the rationality of

new algorithm. In the simulation, we compare the performance of new algorithm with that of LAMA and

LAST. The results show that our new algorithm has as many advantages as LAMA and LAST, does better

in the learning of nonuniform data and has high approximation accuracy.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Neural networks are found to be an effective way to identify
the nonlinear dynamic systems with incomplete knowledge or
even no knowledge. But, the algorithms of neural networks always
suffer from slow convergence, local minimum and overfitting.
Recently, the excellent properties of wavelets have inspired people
to solve these problems by wavelet networks. Usually, there are
two kinds of wavelet networks, which are constructed from
different ideas [1]. One is to take the wavelet network as a special
RBF network [2,3], whose algorithm is to some extent similar to
that of RBF networks. The other is constructed from the multi-
resolution analysis (MRA) (multiresolution approximation) [4].

Whichever wavelet network is taken, the error back propaga-
tion may be the most popular algorithm in the learning [2–4] and
is often combined with orthogonal least square-backward elim-
ination (OLS-BE) [2,3], which is used in the selection of network
structures. Though the error back propagation is improved by the
introduction of wavelets, it still cannot avoid local minimum and
overfitting completely. In order to deal with these problems, many
limitations are imposed on the parameters of wavelet networks
when the error back propagation and OLS-BE are applied [2,3].
However, these limitations often force the error back propagation
to adjust so many parameters during training [5,6] that algorithm
becomes very complex and requires huge computations.

Of course, some algorithms are also proposed to mitigate the
shortcoming of the error back propagation. By fully considering
the smoothness and the initialization of weights [14,15] or

incorporating the fuzzy theory and the Kalman filter etc. into
the algorithm [5,6], just as Ho has done [7], the error back
propagation is improved greatly. However, though these attached
algorithms have obtained some successes in the error back
propagation, they still cannot help wavelet network get rid of its
troubles totally.

Due to the ineffectiveness of error back propagation, many
works also try to train wavelet networks from the view point of
evolutionary algorithms [8], where the evolutionary algorithms
are used first to locate a good region in the parameter space and
then the gradient descent algorithm, the local search procedure, is
adopted to determine a near optimal solution in that region
[9,10]. However, though the evolutionary algorithms are global
searching methods, most evolutionary algorithms are rather
inefficient and cannot avoid certain degeneracy and local mini-
mum completely.

The algorithms above have accelerated convergence, avoided
local minimum and overcome overfitting in some extent, but they
still do not solve the problems of wavelet network completely.
This mostly comes from the fact that these algorithms stem from
that of typical neural networks, so they seldom utilize fully the
excellent properties of wavelets in the frequency-domain.

Instead of typical algorithm of neural network, Zhang proposes
an learning algorithm based on multiresolution analysis (LAMA)
[4]. Since the input weights and the output weights have the
different meanings for the wavelet networks, i.e. the input
weights determine the approximation space (multiresolution
space) and the output weights represent the coefficients of
function basis in the approximation space, LAMA adjusts input
weights and output weights in the different methods [4]. Due to
this disposal, the algorithm of Zhang accelerates the convergence,
avoided local minimum and overcome overfitting effectively, so it
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is soon used, widely, in the wavelet network constructed from the
multiresolution analysis [6,11,12]. However, there still exist some
problems in his algorithm.

One of them is that the algorithm in [4] is designed under the
assumption that the domain of interest can be divided into several
parts where the training data more or less uniform. This disposal
has simplified the learning of wavelet network, but limits the
application of algorithm since the distribution of training data is
not always uniform.

The learning of wavelet network from nonuniform data is very
similar to the problem of nonuniform sampling, where a signal is
reconstructed from a finite number of its unevenly spaced
sampled data.

A famous theorem of nonuniform sampling is Kadec’s 1
4-

theorem, which states that the signal can be reconstructed from
nonuniform data just as from uniform data if the perturbation of
sampling period is not more than 1

4 sampling period [17,18]. This
theorem has influenced the development of nonuniform sampling
theorem [20,21] and forms the basis of typical nonuniform
sampling theorem such as Lagrange-type interpolation [22].

Another nonuniform sampling theory is the jittered sampling.
By jittered samples, we mean the nonuniform samples that are
clustered around uniform. Many algorithms of jittered sampling
are developed on the assumption that there exists a one-to-one
mapping from a nonuniform data set to the uniform one [23,35].
By this mapping, the Fourier transform is analyzed and the
aliasing from the nonuniformity of samples is avoided in low
frequency band [25]. In addition, there are many other algorithms
of jittered samples which are not related to such a mapping. Many
of them are proposed by some typical technologies such as a
Cartesian grid [24], a weighted algorithm [25] and a probability
distribution [27].

Period nonuniform sampling (Papoulis’ generalized sampling)
is another important nonuniform sampling theorem, which has
the close connection with the quadrature mirror filters [28,29].
The periodic nonuniform sampling assume that the nonuniform
data are formed by the discretization of the outputs from several
parallel filters at uniform sampling period after the input of signal
into these filters. Papoulis’ generalized sampling is used widely in
many actual cases, so it is soon extended to a multiple-input
multiple-output sampling scheme and many algorithms are
proposed to analyze its spectral properties and mitigate its
disadvantages [26,28,29].

Since both periodic nonuniform sampling and wavelet are
closely connected with quadrature mirror filters, wavelets are also
used in the interpolation of nonuniform samples [19,32]. Nonuni-
form interpolation by wavelet and scaling function not only
effectively reconstructs the signals by the global information, but
also fully uses the locally dense samples to reconstruct at higher
resolutions [30].

The nonuniform sampling theorems have made great progress,
but few of them can be applied to the learning of wavelet network
directly. For examples, the preconditions of some sampling
theorems, such as period nonuniform sampling, are unavailable
for wavelet network and many of them often do not work well in
the interesting domain where there exist some regions containing
sparse data [23,35], which is just what the neural network has to
deal with. The trouble of nonuniform sampling theorems mostly
arises from the fact that, for some nonuniform distribution, they
do not have such an effective method to describe the information
of target function in discrete data as Shannon theorem, which has
described this by the Fourier transform of discrete data.

Many works also devote to the Fourier transform of the
nonuniform Dirac comb or data in the different models [33,36]
and propose the algorithm to remove the spectral bias of
nonuniform Fourier transform [23,34], but the influence of

nonuniformity on the Fourier transform is still difficult to
estimate for some nonuniform distributions.

Though many typical sampling is difficultly applied to the
learning of neural network directly, some of them are very
suggestive for the learning of neural network. They indicate that
some nonuniform distributions of data can be considered as the
uniform [20,21], many nonuniform data sets can be measured by
several uniform data sets [26,28,29] and the approximation
capacity of wavelets in different resolutions is very suitable for
nonuniform interpolation [30–32].

The combination of wavelet and neural network has supplied
an access to absorb these viewpoints in the learning of wavelet
network. In our previous work [13], we have connected the
sampling theorem to the learning of wavelet network from
uniform data. Here, from the viewpoints of nonuniform sampling,
a novel algorithm, which is closely connected with the localization
of wavelet energy in the time–frequency plane, is proposed to
train wavelet network on the nonuniform data by the iterative
application of the algorithm in [13]. We show that this algorithm
not only has the capacity to learn from the nonuniform data
which are more or less uniform, but also are suitable for the
learning of wavelet network in the domain where there are some
regions containing sparse data.

This work is divided into four parts. In Section 2, the first part, we
briefly review some important theoretical results relative to our
algorithm. Then, in the second part consisting of the Section 3, the
iterative learning algorithm based on sampling theory (ILAST), which
develops from learning algorithm based on sampling theory (LAST),
is proposed to learn from the nonuniform data. In this part, we
discuss two iterative procedures, which correspond, respectively, to
the good localization of activation function energy in the frequency-
domain and the time–frequency plane. Section 4, the third part,
discusses the rationality of ILAST. In the last part, the simulation
shows that our new algorithm learns from the nonuniform data with
the high accuracy and avoids the overfitting effectively.

2. Background

We will use standard notation throughout, which is listed in
Appendix D. In our work, the wavelet network is constructed from
a multiresolution analysis and the Fourier transform is with
respect to any an input variable instead of only time.

For an effective explanation, though there does not exist a
function of compact support whose Fourier transform has a
compact support, in our algorithm, we take approximately a
scaling function or wavelet as the function such that both its
Fourier transform and itself have compact supports because of its
good localization of energy in time–frequency plane.

2.1. Wavelet network in our algorithm

In this subsection, we describe the wavelet network which is
discussed in our algorithm. For more details of its structure and
presentation, please refer to [4].

The wavelet network with three layers is introduced in [4],
which has the following presentation:

f neðxÞ ¼
X1

k¼�1

cJ;kfð2
Jx� kÞ ¼

X1
k¼�1

cJ;kfJ;kðxÞ. (1)

Consider the compact interval of interest. Formula (1) is also
written as

f neðxÞ ¼
XI1

k¼I0

cJ;kfJ;kðxÞ (2)
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