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a b s t r a c t

There are two problems preventing the further development of extreme learning machine (ELM). First,

the ill-conditioning of hidden layer output matrix reduces the stability of ELM. Second, the complexity

of singular value decomposition (SVD) for computing Moore–Penrose generalized inverse limits the

learning speed of ELM. For these two problems, this paper proposes the partial Lanczos ELM (PL-ELM)

which employs the hybrid of partial Lanczos bidiagonalization and SVD to compute output weights.

Experimental results indicate that, compared with ELM, PL-ELM not only effectively improves the

stability and generalization performance but also raises the learning speed.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Recently, Huang et al. [1,2] have proposed a novel learning
algorithm for single hidden layer feedforward networks (SLFNs)
named extreme learning machine (ELM). In ELM, input weights
and hidden layer bias are randomly chosen, and output weights
are analytically determined based on the Moore–Penrose general-
ized inverse of hidden layer output matrix. ELM provides better
generalization performance with extremely fast learning speed
than gradient-based learning algorithms. In addition, ELM avoids
many difficulties faced by gradient-based learning methods such
as stopping criteria, learning rate, learning epochs and local
minima [1,3]. Depending upon these advantages, ELM has been
successfully applied in many areas, such as classification [4],
function approximation [5,6], nontechnical loss analysis [7],
terrain reconstruction [8] and protein structure prediction [9].

In order to enhance the performance of ELM, many improved
models of ELM have been proposed. We roughly summarize these
improved models of ELM into four types: incremental type,
optimization type, replacement type and ensemble type. The
incremental type of ELM creates new hidden layer neurons one by
one according to certain criteria, which is very suitable for stream
data [10–12]. The optimization type of ELM employs some
techniques, such as evolutionary algorithm and linear program-

ming, to tune input weights and hidden layer bias and optimize
the network structure; it achieves good generalization perfor-
mance and much more compact network structure [13–15]. The
replacement type of ELM replaces the activation functions of ELM
(sigmoid and RBF) with sine and cosine functions (or other
functions), which is helpful to improve the accuracy and the
convergence rate for the problem of function approximation [6].
In the ensemble type of ELM, different ELMs are trained by
disjoint subsets of data, but they can share the same hidden layer
neurons [5,16].

Although these models improve the performance of ELM to a
certain degree, there still exists great development space for the
stability and the learning speed of ELM. We firstly analyze the
critical factor influencing the stability of ELM.

As rigorously proven by Huang et al. [1], input weights and
hidden layer bias of SLFNs can be randomly chosen without
tuning, and then the hidden layer output matrix H of SLFNs can
remain unchanged in the whole learning process. Thus, training a
SLFN is equivalent to finding the minimal Euclidean norm solution
b of the linear system Hb ¼ T [1]:

b ¼ HyT such that b ¼ arg min
b
kHb� Tk2 (1)

where b denotes the output weight matrix of the trained ELM, Hy

denotes the Moore–Penrose generalized inverse of the hidden
layer output matrix H, T denotes the target vector. The detailed
specification of these variables is given in [1].
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ELM computes the Moore–Penrose generalized inverse Hy in
Eq. (1) based on the singular value decomposition (SVD) of H [17].
The SVD of H 2 RN�n; NXn, is given by

H ¼ USVT
¼
Xn

i¼1

uisiv
T
i (2)

where U ¼ ðu1; . . . ;unÞ, V ¼ ðv1; . . . ;vnÞ, S ¼ diagðs1; . . . ;snÞ, si 2

S; i ¼ 1; . . . ;n are singular values of H with the order
s1X � � �XsnX0, and the rank r of H equals the number of strictly
positive singular values, i.e. sr4srþ1 ¼ � � � ¼ sn ¼ 0.

Based on Eq. (2), the Moore–Penrose generalized inverse Hy in
Eq. (1) is computed by

Hy ¼ VSyUT
¼
Xr

i¼1

viu
T
i

si
(3)

and the output weight matrix of ELM is computed by

b ¼ HyT ¼
Xr

i¼1

viu
T
i

si
T (4)

In practical applications, the target vector T usually contains a
certain degree of perturbations. Let e denote the perturbation in T
and ~T ¼ Tþ e denote the perturbed target vector. The perturbed
output weight matrix ~b of ELM can be computed by

~b ¼ Hy ~T ¼ HyTþHye ¼
Xr

i¼1

viu
T
i

si
Tþ

Xr

i¼1

viu
T
i

si
e (5)

When the hidden layer output matrix H has a very large
condition number (i.e. H tending to be ill-conditioned), there
always exist some very small (positive and approximate to zero)
singular values in H. From the two summation items in the right
hand of Eq. (5) we can find that, when divided by small singular
values, the output weights become very large and tend to be
greatly influenced by the perturbation e. The large output weights
also weaken the generalization capability of ELM, because the
trained network will behave very different if test data change
but slightly away from the training data. The ill-conditioning
of hidden layer output matrix is the critical factor influencing the
stability of ELM.

We then analyze the critical factor limiting the learning speed
of ELM as follows. The learning time of ELM is mainly consumed
by computing the Moore–Penrose generalized inverse Hy [1]. As
mentioned above (see Eqs. (2)–(4)), computing Hy requires the SVD
of H. For matrix H 2 RN�n, the computational complexity of SVD
is Oð4Nn2 þ 8n3Þ [18]. When the number of hidden layer neurons
(i.e. n) becomes large, the computational complexity of SVD will
significantly rise. Although some methods are proposed to compact
the network structure of ELM [13,14], they make ELM lose its
property of determining network structure completely independent
from training data. The large computational complexity of SVD is
the critical factor limiting the learning speed of ELM.

To improve the stability of ELM, it is necessary to incorporate
some regularization methods for reducing the influences of ill-
conditioning and perturbations. Truncated SVD (TSVD) and
Tikhonov regularization [19,20] are two kinds of widely used
regularization methods. As proven by [19,21], TSVD can provide
similar results with Tikhonov regularization. TSVD only focuses on
the contributions associated with the k largest singular values
and effectively avoids the adverse effects caused by the
smallest singular values. According to TSVD, the Moore–Penrose
generalized inverse of H can be computed by

Hy ¼
Xk

i¼1

viu
T
i

si
; kpr ¼ rankðHÞpn (6)

where k is the truncation number of TSVD for H, usually k5n.

To improve the learning speed of ELM, it is necessary to reduce
the computational complexity of SVD. Although TSVD provides
more stable solutions than SVD, it still depends on the results of
SVD and has the similar computational complexity with SVD [22].
Lanczos bidiagonalization (LBD) is an efficient iterative method
for computing the SVD of large and ill-conditioned matrices
[23–25]. Given the appropriate number of iterations, we can
conduct partial LBD for a matrix. Partial LBD not only makes the
computation of SVD fairly inexpensive but also provides good
approximation to the singular triplets associated with the largest
singular values of the matrix [26]. Partial LBD has been applied to
the computation of many regularization methods, such as
Tikhonov regularization and TSVD [27–29].

In this paper, we propose an enhanced ELM, called partial
Lanczos ELM (PL-ELM), which computes the output weights based
on the hybrid of partial LBD and SVD. PL-ELM first implements
partial LBD to the hidden layer output matrix H so that the linear
system Hb ¼ T can be projected onto a small-size Krylov sub-
space, then PL-ELM determines the approximate solution of
output weights from the Krylov subspace. Since the dimension
of the Krylov subspace is usually much smaller than that of
hidden layer output matrix, PL-ELM can significantly reduce
the computational complexity compared with ELM. On the other
hand, the results of PL-ELM are very similar to those achieved by
directly applying TSVD to the linear system Hb ¼ T. Currently,
PL-ELM mainly deals with the single-output regression problem.
We validate the performance of PL-ELM using several benchmark
regression data sets.

This paper is organized as follows. Section 2 briefly reviews the
partial LBD algorithm; Section 3 proposes the PL-ELM algorithm
and then analyzes the computational complexity, the relative
perturbation bound and the parameter choice of the proposed PL-
ELM algorithm; Section 4 shows experimental results and
discussions; Section 5 contains the conclusion and the considera-
tion of future research.

2. Review of partial LBD

This section briefly reviews partial LBD. The detailed descrip-
tions of partial LBD can be found in [23,30,31] with slightly
different notations. The present notation in this section is
consistent with that of ELM [1]. Given the matrix H 2 RN�n and
the iteration number kðkonÞ, LBD generates a sequence of Lanczos
vectors uj 2 R

N and vj 2 R
n and scalars aj and gj, ðj ¼ 1; . . . ; kÞ:

Choose a nonzero starting vector p0 2 R
N, let g1 ¼ kp0k2, u1 ¼

p0=g1 and v0 � 0. Then implement Lanczos iterations for j ¼

1; . . . ; k

ajvj ¼ HT uj � gjvj�1 (7)

gjþ1ujþ1 ¼ Hvj � ajuj (8)

After k Lanczos iterations, the lower bidiagonal matrix Bk and
two orthonormal Lanczos matrices Ukþ1 and Vk are generated by

Bk ¼

a1

g2 a2

g3
. .
.

. .
.

ak

gkþ1

2
6666666664

3
7777777775

2 Rðkþ1Þ�k (9)

Ukþ1 ¼ ðu1;u2; . . . ;ukþ1Þ 2 R
N�ðkþ1Þ,

UT
kþ1Ukþ1 ¼ Ikþ1; u1 ¼ p0=g1 (10)
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