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a b s t r a c t

Non-invasive techniques such as magnetic resonance spectroscopy (MRS) are often required for

assisting the diagnosis of tumours. Radiologists are not always accustomed to make sense of the

biochemical information provided by MRS and they may benefit from computer-based support in their

decision making. The high dimensionality of the MR spectra obscures atypical aspects of the data that

may jeopardize their classification. In this study, we describe a method to overcome this problem that

combines nonlinear dimensionality reduction, outlier detection, and expert opinion. MR spectra

subsequently undergo a feature selection process followed by classification. The impact of outlier

removal on classification performance is assessed.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Decision making in oncology is a sensitive matter, and even
more so in the specific area of brain tumour oncologic diagnosis,
for which the direct and indirect costs—both human and
financial—of misdiagnosis are very high. In this area, in which
most diagnostic techniques must be non-invasive, clinicians
should benefit from the use of an at least partially automated
computer-based medical decision support system (DSS).

AIDTumour (artificial intelligence decision tools for tumour
diagnosis [1]) is a research project for the design and implemen-
tation of a medical DSS to assist experts in the diagnosis of human
brain tumours on the basis of biological signal data obtained by
magnetic resonance spectroscopy (MRS). This is a technique that
can shed light on cases that remain ambiguous after clinical
investigation. The MRS data used in AIDTumour and analysed in
this paper belong to a complex multi-centre set containing cases
of several brain tumour pathologies [16]. These data have
undergone a rigorous pre-processing quality control that validates
them from the viewpoint of the radiologists. Nevertheless, and for

their use in an automated computer-based DSS, the various
origins of these spectra and the complexity of their pre-processing
make further data exploration advisable.

It might be problematic to include some of the spectra in an
automated DSS without further ado for three different reasons.
Firstly, some may contain measurement or acquisition artefacts
that, even if not completely precluding diagnosis by visual
inspection, might induce errors in computer-based diagnosis:
these are what we call here artefact-related outliers. Secondly,
atypical cases that do not contain artefacts but are nevertheless
unrepresentative of the main distributions of the whole dataset:
herein, these will be referred to as distinct outliers [33]. Thirdly,
some cases with a clear biopsy-based diagnosis (tumour type
attribution) may yield spectra that are quantitatively similar to
those of other tumour types, misleading a computer-based
classification system. Even if representative of the data as a
whole, they are still unrepresentative of their own tumour type:
these we will call class outliers. Note that these three outlier
typologies are not always mutually exclusive.

Machine learning (ML) and related methods can play a useful
role [35] in dealing with the uncertainty introduced by the
presence of outliers in a diagnostic setting. Here, we show the
effectiveness of a method to identify and characterize potentially
conflicting MRS data that combines techniques of nonlinear
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dimensionality reduction (DR), exploratory visualization, and
outlier detection, with expert knowledge. The introduction of
the latter is paramount, as it will help to skim those cases truly
conflictive out of those shortlisted by blind quantitative criteria.
Dimensionality reduction is not trivial in this setting, as the
available MRS data are scarce and high dimensional. Sammon’s
mapping [29] is used to this end. Generative topographic mapping
(GTM [3]), a manifold learning model, is used to quantify the
atypicality of spectra [33,34].

Overall, the aforementioned method is conceived as a
preliminary step to data classification in the DSS, in which
specific cases are tagged with information regarding their possible
atypicality and its characteristics. The fact that the MRS data
analysed in this study are scarce and of high dimensionality
makes their computer-based automated classification a difficult
undertaking. Most importantly, this high dimensionality also
precludes the straightforward interpretation of the obtained
results, limiting their usability in a practical medical setting.
Consequently, dimensionality reduction, in the form of either
feature selection or feature extraction, would help to reduce the
complexity of the problem at hand. Feature extraction, though,
may not comply with the interpretability requirement. The expert
radiologists who are meant to be assisted by the medical DSS are
not usually trained to make sense of new features extracted from
the MRS frequencies. Instead, they often have knowledge of
specific MRS frequencies related to metabolites of known
significance for tumour type discrimination. Note also that one
goal of exploratory studies of this kind is to understand where the
variables selected by the model fit in relation to prior knowledge
from the medical domain [23]. This may limit the practical
applicability of methods such as PCA or ICA as used, for instance,
in [19,13,24,37] for assisting brain tumour diagnosis. As an
example, in analysing these type of data, ICA will often yield
components that ‘‘would correspond with identifying the inde-
pendent degrees of freedom in MRS, not with individual
metabolites, but with characteristic tissue generators’’ [13].

An entropic filtering algorithm (EFA) is used in this study for
feature selection as a fast method to generate a relevant subset of
MR spectral frequencies. Bootstrap resampling techniques are
used to obtain mean performance estimates and their variability.
The main goal is obtaining simple models (in terms of low
numbers of hopefully interpretable MR spectral frequencies) that
generalize well. Outliers might still unduly bias the automated
classification process in the DSS, even if for different reasons. We
hypothesized that, by removing the cases labelled as outliers,
classification accuracy would improve and feature selection
would experiment significant variations. The experimental results
reported in this paper provide partial support for the first
hypothesis but not for the second.

The remaining of the paper is structured as follows. First, the
1H-MRS dataset available for experimentation is briefly described.
This is followed, in Section 3, by a description of the different
analytical methods. Experimental results are presented in Section
4. The paper closes with a section summarizing our conclusions.

2. 1H-MRS brain tumour data

The echo time is an influential parameter in 1H-MRS data
acquisition. In short-echo time (SET) spectra (typically acquired at
20–40 ms) some metabolites are better resolved (e.g. lipids, myo-
inositol, glutamine and glutamate). However, there may be
numerous overlapping resonances (e.g. glutamate/glutamine at
2.2 ppm and NAA at 2.01 ppm) which make the spectra difficult to
interpret [26]. The use of a long-echo time (LET) yields less clearly
resolved metabolites but also less baseline distortion, resulting in

a more readable spectrum. There are a few studies comparing the
classification potential of these two types of spectra (see, e.g.
[26]). In this study, we focus on LET data.

The analysed data correspond to 195 LET single voxel 1H-MR
spectra acquired in vivo from brain tumour patients. They include
55 meningiomas (mm), 78 glioblastomas (gl), 31 metastases (me),
20 astrocytomas grade II (a2), 6 oligoastrocytomas grade II (oa),
and 5 oligodendrogliomas grade II (od). Following a common
procedure [26,24], the clinically-relevant regions of the spectra
were sampled to obtain 195 frequency intensity values (measured
in parts per million (ppm), an adimensional unit of relative
frequency position in the data vector), from 4.25 ppm down to
0.56 ppm. These frequencies become data attributes in the
reported experiments and, as a result, the analysed data consist
of 195 cases and 195 attributes.

These data are extracted from a database resulting from the
international network for pattern recognition of tumours using

magnetic resonance (INTERPRET) European research project [16].
The criteria for the selection of cases to be included in the original
complete database (in which there are more tumour types than
the ones analysed in this study as well as cases corresponding to
normal tissue and abscesses) were: (a) that the case had a single
voxel SET, 1.5 T spectrum acquired from a nodular region of the
tumour; (b) that the voxel was located in the same region as
where subsequent biopsy was obtained; (c) that the short-echo
spectrum had not been discarded because of acquisition artefacts
or other reasons and (d) that a histopathological diagnosis was
agreed among a committee of neuropathologists. In those cases in
which the spectra were obtained from normal volunteers without
the pathology, or corresponded to abscesses or clinically proven
metastases, biopsy was not required. For further details on data
acquisition and processing, and on database characteristics, see,
for instance, [15,16].

Class labelling was performed according to the World Health
Organization (WHO) system for diagnosing brain tumours by
histopathological analysis of a biopsy sample. For the analyses
reported in this study, a subset of spectra from the database were
bundled into three groups, namely: G1: low-grade gliomas (a2, oa

and od); G2: high-grade malignant tumours (me and gl); and G3:
meningiomas (mm). This type of grouping is justified [31] by the
well-known difficulty in distinguishing between metastases and
glioblastomas, due to their similar spectral pattern produced by
the highly necrotic nature of these tumours.

3. Methods

3.1. Outlier characterization

3.1.1. MRS data dimensionality reduction and visualization through

Sammon’s mapping

There are several decisions involved in the choice of a
dimensionality reduction method. To name just a few [22]: hard
vs. soft DR; generative vs. non-generative methods; implicit vs.
explicit mappings; or linear vs. nonlinear DR. For this study, a
nonlinear DR method was preferred in principle (instead of a
linear alternative such as PCA or classical Multi-Dimensional
Scaling, for instance), as there existed no a priori reason to assume
only linear dependencies. Given that DR in this study does not aim
at providing generalization, an explicit mapping procedure was
also preferred. A typical desiderata for the visual representation of
data and knowledge can be formulated in terms of maximizing
structure preservation and, therefore, a method with ‘‘in-built’’
preservation of inter-point distances was also preferred.
The nonlinear Sammon’s mapping method [29] fits all those
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