
Letters

Exponential stability of hybrid stochastic neural networks with mixed time
delays and nonlinearity$

Wuneng Zhou a,b, Hongqian Lu a,d,�, Chunmei Duan c

a College of Information Science and Technology, Donghua University, Shanghai 201620, China
b Engineering Research Center of Digitized Textile & Fashion Technology, Ministry of Education, Donghua University, Shanghai 201620, China
c School of Management and Economics, Shandong Normal University, Shandong 250014, China
d School of Electronic Information and Control Engineering, Shandong Institute of Light Industry, Shandong 250353, China

a r t i c l e i n f o

Article history:

Received 3 December 2008

Received in revised form

13 April 2009

Accepted 24 April 2009

Communicated by Z. Wang
Available online 10 May 2009

Keywords:

Neural networks

Uncertain systems

Stochastic systems

Mixed time-delays

Exponential stability

a b s t r a c t

This paper is concerned with the problem of robust exponential stability for a class of hybrid stochastic

neural networks with mixed time-delays and Markovian jumping parameters. In this paper, free-

weighting matrices are employed to express the relationship between the terms in the Leibniz–Newton

formula. Based on the relationship, a linear matrix inequality (LMI) approach is developed to establish

the desired sufficient conditions for the mixed time-delays neural networks with Markovian jumping

parameters. Finally, two simulation examples are provided to demonstrate the effectiveness of the

results developed.

& 2009 Published by Elsevier B.V.

1. Introduction

Neural networks (cellular neural networks, Hopfield neural
networks and bi-directional associative memory networks) have
been intensively studied over the past few decades and have
found application in a variety of areas, such as image processing,
pattern recognition, associative memory and optimization pro-
blems [1–3]. In reality, time-delay systems are frequently
encountered in various areas, e.g. in neural networks, where a
time delay is often a source of instability and oscillations.
Recently, both delay-independent and delay-dependent sufficient
conditions have been proposed to verify the asymptotical or
exponential stability of delay neural networks, see e.g. [4–10].

On the other hand, stochastic modeling has come to play an
important role in many real systems [11,12], as well as in neural
networks. Neural networks have finite modes, which may jump
from one to another at different times. Recently, it has been shown
in [13–14] that, the jumping between different neural network
modes can be governed by a Markovian chain. Furthermore, in
real nervous systems, the synaptic transmission is a noisy process

brought on by random fluctuations from the release of neuro-
transmitters and other probabilistic causes. It has also been
known that a neural network could be stabilized or destabilized
by certain stochastic inputs [15]. Hence, the stability analysis
problem for stochastic neural networks becomes increasingly
significant, and some results related to this problem have recently
been published, see e.g. [15–17]. To the best of the authors’
knowledge, the robust exponential stability analysis problem for
uncertain stochastic neural networks with mixed time-delays and
Markovian jumping parameters, which is still an open problem,
has not yet been fully investigated.

In this paper, we study the global exponential stability
problem for a class of hybrid stochastic neural networks with
mixed time-delays and Markovian jumping parameters, where
the mixed delays comprise discrete and distributed time-delays,
the parameter uncertainties are norm-bounded, and the neural
networks are subjected to stochastic disturbances described in
terms of a Brownian motion. By utilizing a Lyapunov–Krasovskii
functional candidate and using the well-known S-procedure, we
convert the addressed stability analysis problem into a convex
optimization problem. In this letter, the free-weighting-matrix
approach is employed to derive a linear matrix inequality (LMI)-
based delay-dependent exponential stability criterion for neural
networks with mixed time-delays and Markovian jumping
parameters. Note that LMIs can be easily solved by using the
Matlab LMI toolbox, and no tuning of parameters is required.
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Numerical examples demonstrate the effectiveness of this
method.

Notation: The notations in this paper are quite standard. Rn and

Rn�m denote, respectively, the n dimensional Euclidean space and
the set of all n�m real matrices. The superscript ‘‘T’’ denotes the
transpose and the notation X � Y (respectively, X4Y), where X

and Y are symmetric matrices, means that X � Y is positive semi-
definite (respectively, positive definite). I is the identity matrix

with compatible dimension. Let h40 and Cð½�h;0�;Rn
Þ denote the

family of continuous functions j from ½�h;0� to Rn with the norm

jjj ¼ sup�h�y�0jjðyÞj, where j:j is the Euclidean norm in Rn. A is a

matrix, denoted by jAj its operator norm, i.e., jAj ¼ supfjAxj :

jxj ¼ 1g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðA

T AÞ
q

, where lmaxð:Þ (respectively, lminð:Þ) means

the largest (respectively, smallest) eigenvalue of A. l2½0;1Þ is the
space of square integrable vector. Moreover, let ðO;F; fFtgt �

0;PÞ be a complete probability space with a filtration fFtgt � 0
satisfying the usual conditions (i.e., the filtration contains all

P-null sets and is right continuous). Denote by Lp
F0
ð½�h;0�Þ;Rn

Þ the

family of all F0-measurable Cð½�h;0�;Rn
Þ-valued random vari-

ables x ¼ fxðyÞ : �h � y � 0g such that sup�h�y�0EjxðyÞjpo1,

where Ef:g stands for the mathematical expectation operator with
respect to the given probability measure P. Sometimes, the arguments
of a function will be omitted in the analysis when no confusion can

arise. Finally, we use the symbol maddtðXÞ to represent X þ XT .

2. Problem formulation

In this letter, the neural network with mixed time-delays is
described as follows:

_uðtÞ ¼ � AuðtÞ þW0g0ðuðtÞÞ þW1g1ðuðt � hÞÞ

þW2

Z t

t�t
g2ðuðsÞÞdsþ V , (1)

where uðtÞ ¼ ½u1ðtÞ;u2ðtÞ; . . . ;unðtÞ�
T 2 Rn is the state vector asso-

ciated with n neurons and the diagonal matrix A ¼ diagða1;

a2; . . . ; anÞ has positive entries ak40. W0 ¼ ðw
0
ijÞn�n, W1 ¼ ðw

1
ijÞn�n

and W2 ¼ ðw
2
ijÞn�n are, respectively, the connection weight matrix,

the discretely delayed connection weight matrix, and the distri-
butively delayed connection weight matrix. gkðuðtÞÞ ¼ ½gk1ðu1Þ; gk2

ðu2Þ; . . . ; gknðunÞ�
T ðk ¼ 0;1;2Þ denotes the neuron activation func-

tion with gkð0Þ ¼ 0, and V ¼ ½V1;V2; . . . ;Vn�
T is a constant external

input vector. The scalar h40, which may be unknown, denotes the
discrete time delay, where the scalar t40 is the known
distributed time-delay.

Assumption 1. The neuron activation functions gið:Þ in (1), are
bounded and satisfy the following Lipschitz condition

jgkðxÞ � gkðyÞj � jGkðx� yÞj; 8x; y 2 R ðk ¼ 0;1;2Þ, (2)

where Gk 2 Rn�n are known constant matrices.

Remark 1. In this letter, none of the activation functions are
required to be continuous, differentiable and monotonically
increasing. Note that the types of activation functions in (2) have
been used in many papers, see [10,13,15–17].

Let u� be the equilibrium point of (1). For the purpose of
simplicity, we transform the intended equilibrium u� to the origin
by letting x ¼ u� u�, and then the system (1) can be transformed
into:

_xðtÞ ¼ �AðxÞ þW0loðxðtÞÞ þW1l1ðxðt � hÞÞ þW2

Z t

t�t
l2ðxðsÞÞds, (3)

where xðtÞ ¼ ½x1ðtÞ; x2ðtÞ; . . . ; xnðtÞ�
T 2 Rn is the state vector of the

transformed system. It follows from (2) that the transformed

neuron activation functions lkðxÞ ¼ gkðxþ u�Þ � gkðu
�Þ ðk ¼ 0;1;2Þ

satisfy

jlkðxÞj � jGkðxÞj, (4)

where Gk 2 Rn�n
ðk ¼ 0;1;2Þ are specified in (2).

By the model (3), we are in a position to introduce the hybrid
stochastic neural networks with mixed time delays and non-
linearity as follows.

Let frðtÞ; t � 0g be a right-continuous Markov process on the
probability space, which takes values in the finite space S ¼

f1;2; . . . ;Ng with generator G ¼ ðpijÞði; j 2 SÞ given by

Pfrðt þDÞ ¼ jjrðtÞ ¼ ig ¼
pijDþ oðDÞ if iaj;

1þ piiDþ oðDÞ if i ¼ j;

(

where D40 and limD!1oðDÞ=D ¼ 0. pij � 0 is the transition rate
from i to j if iaj and pii ¼ �

P
jaipij.

We consider the following hybrid stochastic neural networks
with mixed time delays and nonlinearity, which is actually a
modification of (3).

dxðtÞ ¼ � ðAðrðtÞÞ þ DAðrðtÞÞÞxðtÞ þ ðW0ðrðtÞÞ

�
þ DW0ðrðtÞÞÞl0ðxðtÞÞ þ ðW1ðrðtÞÞ þ DW1ðrðtÞÞÞl1ðxðt � hÞÞ

þðW2ðrðtÞÞ þ DW2ðrðtÞÞÞ

Z t

t�t
l2ðxðsÞÞds

�
dt

þ sðt; xðtÞ; xðt � hÞ; rðtÞÞdoðtÞ. (5)

For notational convenience, we give the following definitions:

dxðtÞ ¼ yðt; iÞdt þ sðt; xðtÞ; xðt � hÞ; rðtÞÞdoðtÞ (6)

where

yðt; iÞ ¼ �ðAðrðtÞÞ þ DAðrðtÞÞÞxðtÞ
�

þ ðW0ðrðtÞÞ þ DW0ðrðtÞÞÞl0ðxðtÞÞ

þ ðW1ðrðtÞÞ þ DW1ðrðtÞÞÞl1ðxðt � hÞÞ þ ðW2ðrðtÞÞ

þDW2ðrðtÞÞÞ

Z t

t�t
l2ðxðsÞÞds

�
dt,

oðtÞ ¼ ½o1ðtÞ;o2ðtÞ; . . . ;omðtÞ�
T 2 Rm is a Brownian motion defined

on ðO;F; fFtgt�0; PÞ. Here,

DAðrðtÞÞ ¼ MAðrðtÞÞFðt; rðtÞÞNAðrðtÞÞ,

DWkðrðtÞÞ ¼ MkðrðtÞÞFðt; rðtÞÞNkðrðtÞÞ; k ¼ 0;1;2, (7)

where DAðrðtÞÞ is a diagonal matrix, and MAðrðtÞÞ,NAðrðtÞÞ, MkðrðtÞÞ,
NkðrðtÞÞ ðk ¼ 0;1;2Þ, are known real constant matrices with
appropriate dimensions at mode rðtÞ. The matrix Fðt; rðtÞÞ, which
may be time-varying, is unknown and satisfies

FT
ðt; rðtÞÞFðt; rðtÞÞ � I; 8t � 0; rðtÞ ¼ i 2 S. (8)

Assume that s : Rþ � Rn
� Rn

� S is local Lipschitz continuous and
satisfies the linear growth condition [16]. Moreover, s satisfies

trace½sT ðt; xðtÞ; xðt � hÞ; rðtÞÞsðt; xðtÞ; xðt � hÞ; rðtÞÞ�

� jS1;rðtÞxðtÞj
2 þ jS2;rðtÞxðt � hÞj2 (9)

where S1i and S2i are known constant matrices with appropriate
dimensions. Observe the system (5) and let xðt; xÞ denote the state
trajectory from the initial data xðyÞ ¼ xðyÞ on �h � y � 0 in
L2
F0
ð½�h;0�;Rn

Þ. Clearly, the system (5) admits an equilibrium
point (trivial solution) xðt;0Þ � 0 corresponding to the initial data
x ¼ 0. For all d 2 ½�d;0�, suppose that 9$40, such that

jxðt þ dÞj �$jxðtÞj; d ¼ maxft;hg. (10)

Recall that the Markovian process frðtÞ; t � 0g takes values
in the finite set S ¼ f1;2; . . . ;Ng. For the sake of simplicity,
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