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a b s t r a c t

Liang et al. [A fast and accurate online sequential learning algorithm for feedforward networks, IEEE

Transactions on Neural Networks 17 (6) (2006), 1411–1423] has proposed an online sequential learning

algorithm called online sequential extreme learning machine (OS-ELM), which can learn the data one-

by-one or chunk-by-chunk with fixed or varying chunk size. It has been shown [Liang et al., A fast and

accurate online sequential learning algorithm for feedforward networks, IEEE Transactions on Neural

Networks 17 (6) (2006) 1411–1423] that OS-ELM runs much faster and provides better generalization

performance than other popular sequential learning algorithms. However, we find that the stability of

OS-ELM can be further improved. In this paper, we propose an ensemble of online sequential extreme

learning machine (EOS-ELM) based on OS-ELM. The results show that EOS-ELM is more stable and

accurate than the original OS-ELM.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Early in 1990, the idea of neural network ensembles has
already been proposed by Hansen and Salamon [2]. Their work
showed that a single network’s performance can be expected to
improve using an ensemble of neural networks with a plurality
consensus scheme. This technique has been widely spread after
that. The most prevailing approaches for training neural network
ensembles are Bagging [3] and Boosting [4–6]. However, most of
the methods used to train the ensemble require all the data
available at the process of training, and it is usually referred to as
batch learning. In many real world applications, learning has to be
really an ongoing process since the complete set of data is usually
not available at once. When new data arrive, batch learning
performs a retraining using past data as well as the new data, and
hence costs a lot of time.

Therefore, sequential learning algorithms could be a solution
for networks learning new information as it becomes available.
Online sequential extreme learning machine (OS-ELM) proposed
by Liang et al. [1] is a fast and accurate online sequential learning
algorithm for single hidden layer feedforward networks (SLFNs)
with additive and radial basis function (RBF) hidden nodes.
OS-ELM is developed on the basis of extreme learning machine
(ELM) [7–12] that is used for batch learning and has been shown
to be extremely fast with good generalization performance.
Compared to ELM, OS-ELM can learn data one-by-one or chunk-

by-chunk (a block of data) with fixed or varying chunk size.
The parameters of hidden nodes in OS-ELM (input weights and
biases for additive nodes or the centers and impact factors for RBF
nodes) are randomly selected and the output weights are
analytically determined. Simulation results in [1] have shown
that OS-ELM is faster than other sequential algorithms and
produces better generalization performances on many benchmark
problems in the regression, classification and time-series predic-
tion areas.

However, we find that similar to other learning algorithms OS-
ELM may have variations in different trials of simulations. To
improve the performance of OS-ELM and introduce the sequential
learning mode into the ensemble networks, we propose an
integrated network structure, which is called ensemble of online
sequential extreme learning machine (EOS-ELM). EOS-ELM com-
prises several OS-ELM networks. The average value of outputs of
each OS-ELM in the ensemble is used as the final measurement of
network performance. The simulation results prove that EOS-ELM
is more stable than original OS-ELM in each trial of simulation for
most of problems. And we conduct the comparison between EOS-
ELM and negative correlation learning (NCL) [13]. The results
show that EOS-ELM is better than NCL on the applications
selected.

2. Review of OS-ELM

OS-ELM on the basis of ELM was developed for SLFNs with
additive and RBF hidden nodes. Consider N arbitrary distinct
samples ðxi; tiÞ 2 Rn

� Rm. If a SLFN with L hidden nodes can
approximate these N samples with zero error, it then implies that
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there exist bi, ai and bi such that

f LðxjÞ ¼
XL

i¼1

biGðai; bi;xjÞ ¼ tj; j ¼ 1; � � � ;N, (1)

where ai and bi are the learning parameters of the hidden nodes,
bi is the output weight, and Gðai; bi;xjÞ denotes the output of the
ith hidden node with respect to the input xj. When using additive
hidden node, Gðai; bi;xjÞ ¼ gðai � xj þ biÞ; bi 2 R, where ai is the
input weight vector, bi is the bias of the ith hidden node, and ai � xj

denotes the inner product of the two. When using RBF hidden
node, Gðai; bi;xjÞ ¼ gðbikxj � aikÞ; bi 2 Rþ, where ai and bi are the
center and impact width of the ith RBF node, and Rþ indicates the
set of all positive real values.

Assume the network has L hidden nodes and the data @ ¼
fðxi; tiÞjxi 2 Rn; ti 2 Rm; i ¼ 1; . . . ;Ng presents to the network se-
quentially (one-by-one or chunk-by-chunk). There are two phases
in OS-ELM algorithm, an initialization phase and a sequential
phase. In the initialization phase, rankðH0Þ ¼ L is required to
ensure that OS-ELM can achieve the same learning performance
as ELM, where H0 denotes the hidden output matrix for
initialization phase. It means the number of training data required
in the initialization phase N0 has to be equal to or greater than L,
i.e. N0XL. And if N0 ¼ N, OS-ELM is the same as batch ELM. Hence,
ELM can be seen as a special case of OS-ELM when all the data
present in one iteration.

Initialization phase: A small chunk of training data is used to
initialize the learning, @0 ¼ fðxi; tiÞg

N0

i¼1 from the given training set
@ ¼ fðxi; tiÞjxi 2 Rn; ti 2 Rm; i ¼ 1; . . . ;Ng, and N0XL.

(a) Randomly assign the input parameters: for additive hidden
nodes, parameters are input weights ai and bias bi; for RBF
hidden nodes, parameters are center ai and impact factor bi;
i ¼ 1; . . . ; L.

(b) Calculating the initial hidden layer output matrix H0

H0 ¼

Gða1; b1;x1Þ � � � GðaL; bL;x1Þ

..

.
� � � ..

.

Gða1; b1;xN0
Þ � � � GðaL;bL;xN0

Þ

2
664

3
775

N0�L

(2)

(c) Estimating the initial output weight bð0Þ

We have T0 ¼ ½t1; . . . ; tN0
�TN0�m, and the problem is to minimize

kH0b� T0k. From [1], we know that Hy ¼ ðHT HÞ�1HT . The
solution to minimize kH0b� T0k is given by bð0Þ ¼ P0HT

0T0,
where P0 ¼ ðH

T
0H0Þ

�1, and K0 ¼ HT
0H0 ¼ P�1

0 .
(d) Set k ¼ 0. (k: a parameter indicates the number of chunks of

data that is presented to the network.)

Sequential learning phase: Present the ðkþ 1Þth chunk of new
observations,

@kþ1 ¼ fðxi; tiÞg

Pkþ1

j¼0
Nj

i¼ð
Pk

j¼0
NjÞþ1

,

and Nkþ1 denotes the number of observations in the ðkþ 1Þth
chunk.

(a) Compute the partial hidden layer output matrix Hkþ1

Hkþ1 ¼

G a1; b1;x Pk

j¼0
Nj

� �
þ1

0
@

1
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j¼0
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Nkþ1�L

(3)

(b) Calculate the output weight bðkþ1Þ

We have Tkþ1 ¼ ½t
ð
Pk

j¼0
NjÞþ1

; � � � ; tPkþ1

j¼0
Nj

�TNkþ1�m. And

Kkþ1 ¼ Kk þHT
kþ1Hkþ1 (4)

bðkþ1Þ
¼ bðkÞ þ K�1

kþ1HT
kþ1ðTkþ1 �Hkþ1b

ðkÞ
Þ (5)

From Eq. (5), we find that K�1
kþ1 is used to compute bðkþ1Þ. In

order to avoid calculating inverse in the recursive process, the
Woodbury formula [14] is applied to modify the equations

K�1
kþ1 ¼ ðKk þHT

kþ1Hkþ1Þ
�1

¼ K�1
k � K�1

k HT
kþ1ðIþHkþ1K�1

k HT
kþ1Þ

�1Hkþ1K�1
k (6)

And Pkþ1 ¼ K�1
kþ1, we modify the Eqs. (4) and (5) using (6):

Pkþ1 ¼ Pk � PkHT
kþ1ðIþHkþ1PkHT

kþ1Þ
�1Hkþ1Pk (7)

bðkþ1Þ
¼ bðkÞ þ Pkþ1HT

kþ1ðTkþ1 �Hkþ1b
ðkÞ
Þ (8)

(c) Set k ¼ kþ 1. Go to (a) in this sequential learning phase.

3. Ensemble of OS-ELM

EOS-ELM consists of many OS-ELM networks with same
number of hidden nodes and same activation function for each
hidden node. We have constructed P OS-ELM networks to form
our EOS-ELM. All P OS-ELMs are trained with new data in each
incremental step. The input parameters for each OS-ELM network
are randomly generated and the output weights are obtained
analytically based on the sequential arrived input data. Then we
compute the average of the outputs of each OS-ELM network,
which is the final output of the EOS-ELM. Assume the output of
each OS-ELM network is f ðjÞðxiÞ; j ¼ 1; . . . ; P. Hence, we have

f ðxiÞ ¼
1

P

XP

j¼1

f ðjÞðxiÞ, (9)

where f ðxiÞ is the output of the whole system with the input of xi.
We expect that EOS-ELM works better than individual OS-ELM

network because the randomly generated parameters make each
OS-ELM network in the ensemble distinct. Therefore, the OS-ELM
networks composing the ensemble may have different adaptive
capacity to the new data. When the data come into the ensemble
network sequentially, some of OS-ELM networks may adapt faster
and better to the new data than others. However, because for
different incoming data, different OS-ELM networks can be the
ones that have good adaptation, the EOS-ELM should be seen as a
whole system. The system could avoid the cases when the
individual OS-ELM network could not adapt well to the new data,
which make the final result of individual OS-ELM network worst
in the round of simulation as compared to other rounds.
Statistically speaking, the population mean is always closer to
the expectation than the elements in the population, which
implies that the results obtained by EOS-ELM are always
fluctuating in a smaller range as compared to the results obtained
by single OS-ELM network. When P becomes larger, the mean
value f ðjÞðxiÞ is closer to the expectation of f ðjÞðxiÞ. Therefore, we
may conclude that the EOS-ELM could be more stable when P is
larger. However, when P increases, the computation time also
increases and the network becomes more complex. Considering
the computation time, complexity and stability of the network, we
decide to conduct the selection of parameter P among 5, 10, 15, 20,
25, and 30. The simulation results are all presented in the
following section.

When N0 ¼ N, EOS-ELM becomes an ensemble of batch ELM
networks [15]. Therefore, the ensemble of ELM proposed in [15]
can be seen as a special case of EOS-ELM when all the training
data are available at one time.
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