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Abstract

By formulating two-dimensional principle component analysis (2DPCA) as a mathematical form different from the conventional
2DPCA, we present theoretical basis of 2DPCA and show the theoretical similarities and differences between 2DPCA and PCA. We also
show that 2DPCA owns its decorrelation property and the feature vectors extracted from matrices are uncorrelated. We use the proposed
mathematical form to show that 2DPCA is the best approach for directly extract features from matrices. We also present in detail
2DPCA Schemes 1 and 2, two schemes to implement the proposed mathematical form. The two schemes transform original images into
different spaces, respectively, 2DPCA Scheme 1 enhances the transverse characters of images, whereas the second scheme enhances
vertical characters of images. We propose a feature fusion approach for achieving better recognition results by combining the features
generated from the two schemes of 2DPCA. The proposed fusion approach is tested on face recognition tasks and is found to be more

accurate than both 2DPCA Scheme 1 and 2DPCA Scheme 2.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Principal component analysis (PCA) [1-10] is a widely
applied dimension reduction and feature extraction tech-
nique. It has been used in handprint recognition [7], the
recognition of man-made objects [6], industrial robotics
[18], and image-based recognition systems [4,13]. PCA is
generally implemented on image data as follows: first an
image matrix is converted into a vector by concatenating its
columns or rows. Then eigenvectors of the covariance
matrix or correlation matrix of these vectors are used as
transforming axes to obtain their principal components.
PCA has been shown to be effective [4,5,9,10,13,14,18,19,
21-24,28] but it does suffer from two particular problems.
First, if the number of training samples is small and the
data are high-dimensional, it is difficult to accurately
estimate the covariance (or correlation) matrix. Second,
because the one-dimensional vector space derived from
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images is usually of very large dimensionality, implementa-
tion of PCA is usually very time consuming [24,25].

Responding to these drawbacks, two-dimensional PCA
(2DPCA), a novel transform technique derived from the
PCA technique, directly extracts features from image
matrices [25,26]. Note that 2DPCA as the generation
matrix takes the covariance matrix (or correlation matrix)
of the image matrix rather than the corresponding one-
dimensional vector. 2DPCA calculates directly the projec-
tion of a matrix onto the transforming axis. 2DPCA is
much more efficient than PCA [25], requiring less memory
and having a lower computational cost and has obtained
promising experimental results in the areas of feature
extraction and dimension reduction. A further difference
between traditional PCA and 2DPCA is that in PCA every
feature that is extracted is a scalar whereas in 2DPCA
every extracted feature is a vector, hereafter called a feature
vector. However, it is not known whether the approach is
theoretically well-founded.

In this paper we will analyze the theoretical basis of
2DPCA and propose a new 2DPCA-based feature fusion
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approach that combines the feature extraction results of two
2DPCA implementation schemes. We will further show that
under the proposed mathematical form of 2DPCA, certain
fine theoretical properties hold, for example decorrelation.

Some previous literatures also provide valuable investi-
gation of 2DPCA. For example, Wang et al. [15-17]
demonstrated that 2DPCA was equivalent to a special case
of block-based PCA [3]. Xu et al. [20] constructed two
transformation matrices based on the 2DPCA technique,
and performed two transforms to obtain features of a
matrix. Motivated by the successes of the two-dimensional
linear discriminant analysis, Tao et al. [11,12] developed a
general tensor discriminant analysis. Ye et al. proposed
generalized principal component analysis (GPCA) in [27].
GPCA also works directly with images in their native state,
as two-dimensional matrices, by projecting the images to a
vector space that is the tensor product of two lower-
dimensional vector spaces.

The differences between our 2DPCA schemes and the
previous approaches are as follows. Liwei Wang’s approach
[15,17] seems to be computationally equivalent to our
2DPCA scheme 1. However, he also did not analyze the
theoretical basis of 2DPCA whereas we analyze this and
indicate the decorrelation property of 2DPCA. Different
from Xu’s approach [20] of consecutively performing two
transforms to obtain features of a matrix, this paper focuses
on fusing two classes of image features obtained using two
different implementation schemes of 2PCA to improve face
recognition performance. That is, the transform matrices
generated from 2DPCA Scheme 1 and 2DPCA Scheme 2
were first used to transform image matrices into two classes of
features. Then the two classes of features were fused for face
recognition by using a matching score fusion approach.
Although from the point of view of methodology, GPCA [27]
and 2DPCA belong to the same class of technique, that is,
they can both extract features directly from a two-dimen-
sional matrix, no closed form solution exists for GPCA and it
cannot be proved theoretically that the two 2DPCA schemes
presented in this paper are special cases of GPCA.

The rest of the paper is organized as follows. Section 2
formally presents 2DPCA and its theoretical basis and
introduces two 2DPCA implementation schemes. Section 3
presents the characteristics of the reconstruction images,
respectively, associated with the two implementation
schemes. Section 4 proposes the 2DPCA-based feature
fusion approach. Section 5 offers a brief Conclusion.

2. Theoretical basis and implementation schemes of 2DPCA

Suppose there are M images and A, A,,...,Ay are,
respectively, the matrices corresponding to these images.
The conventional 2DPCA [25] as the generation matrix
takes the following covariance matrix:

6= LS (= aya, - Ay
t_Mi:] i i s

where A is the mean of all the image matrices. Eigenvalues
and eigenvectors of G, should be first determined, and then
k eigenvectors associated with the k largest eigenvalues are
selected as transforming axes. The conventional 2DPCA
projects an image matrix onto these transforming axes,
respectively, and regards the resultant k projections
(k vectors) as features of the image [25]. One of the
advantages of 2DPCA is that it is much more efficient than
PCA [25]. In addition, 2DPCA has obtained promising
experimental results in the areas of feature extraction and
dimension reduction. However, it is not known whether the
approach is theoretically well-founded.

2.1. 2DPCA Scheme 1

In this paper, 2DPCA Scheme 1 is referred to as the
2DPCA technique based on the generation matrix
Y, = FE(A"4), where A stands for a two-dimensional
matrix. Note that the generation matrix of 2DPCA Scheme
1 is formally different from that of the conventional
2DPCA, thus we say that 2DPCA Scheme 1 formulates the
2DPCA technique as a new mathematical form. This
subsection will address this issue of whether the 2DPCA
technique is theoretically well-founded. Indeed, our analy-
sis will demonstrate that 2DPCA Scheme 1 is able to
produce the minimal reconstruction error and uncorrelated
feature vectors. Suppose that non-decreasing eigenvalues
of Xy are A, =4> .- =4, 2DPCA Scheme 1 takes the r
eigenvectors corresponding to the first r largest eigenvalues
of 2| as transforming axes to directly extract features from
a matrix. Using 2DPCA Scheme 1, we can project a matrix
onto a transforming axis to produce a feature vector
(column-feature-vector). If 2DPCA Scheme 1 exploits
multiple transforming axes for feature extraction, the
feature extraction results will be multiple column-feature-
vectors, which can form a new matrix. In this sense, we say
that 2DPCA Scheme 1 transforms an original matrix into a
new matrix with smaller dimension. We begin with the
following theorem to analyze theoretical basis of 2DPCA
Scheme 1.

Theorem 1. Measured using mean squared error, 2DPCA is
the best technique for directly transforming matrices into

feature vectors as feature vectors obtained using the 2DPCA

technique allow matrices to be reconstructed with the
minimum mean-square reconstruction error.

Proof. Suppose that image matrix 4 can be accurately
expressed in terms of

A= vuf, 1<i, j<n. (1)
i=1
where
loi=j,
Ty = (1<i<
u; uj {0 i), u; (1<i<n)
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