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a b s t r a c t

One of the problems that hinders the spectral analysis of trees is that they have a strong tendency to be

co-spectral. As a result, structurally distinct trees possess degenerate graph-spectra, and spectral

methods can be reliably used to neither compute distances between trees nor to cluster trees. The aim

of this paper is to describe a method that can be used to alleviate this problem. We use the ISOMAP

algorithm to embed the trees in a Euclidean space using the pattern of shortest distances between

nodes. From the arrangement of nodes in this space, we compute a weighted proximity matrix, and from

the proximity matrix a Laplacian matrix is computed. By transforming the graphs in this way we lift the

co-spectrality of the trees. The spectrum of the Laplacian matrix for the embedded graphs may be used

for purposes of comparing trees and for clustering them. Experiments on sets of shock graphs reveal the

utility of the method on real-world data.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

Tree structures have been used with considerable effect in
computer vision to represent both object shape, scene structure
and object articulation [27]. Examples include the use of shock
trees to represent object boundary structure [27], the use of free-
trees to represent human form [12] and the use of trees as
compact image data-structures [34]. One of the problems that
arises in the manipulation of large amounts of tree data is that of
clustering. Although this task can be effected by applying pairwise
clustering methods to the edit distance between trees, it does not
allow the distribution of trees to be visualized or the effects of
systematic changes in tree-structure to be assessed. Moreover,
since computing the edit distance between trees relies on the
availability of correspondences between nodes, and this is
potentially an NP-hard problem, the computational overheads
can be large.

One way to overcome the problem of computing the distance
between discrete structures is to embed them in a low-dimensional
space that minimizes the distortion. In this low-dimensional space,
distances may be computed by taking a standard norm between the
embedded pattern vectors. The problem of how to construct such
an embedding has been the focus of activity in pattern recognition
for several decades. For instance principal components analysis

(PCA) projects pattern vectors into a low-dimensional space that
maximally preserves the variance of the original data [13].
Multidimensional scaling (MDS), on the other hand, can be used
to embed non-ordinal data into a low-dimensional space which
preserves the relational pattern residing in the set of pairwise
distances between data-items by minimizing the stress of the data
[7]. However, these pattern analysis methods can only be applied
for the data which is in vectorial form, or a distance function is to
hand, and hence do not extend easily to discrete structures such as
trees or graphs. In the mathematics literature, on the other hand,
there is a considerable body of work aimed at understanding how
graphs can be embedded in manifolds. Broadly speaking there are
three ways in which the problem has been addressed. First, the
graph can be interpolated by a surface whose genus is determined
by the number of nodes, edges and faces of the graph. Second, the
graph can be interpolated by a hyperbolic surface which has the
same pattern of geodesic (internode) distances as the graph [1,5].
Third, a manifold can be constructed whose triangulation is the
simplicial complex of the graph [33,21]. A review of methods for
efficiently computing distance via embedding is presented in the
recent paper of Hjaltason and Samet [11].

In the pattern analysis community, there has recently been
renewed interest in the use of embedding methods motivated by
graph theory. One of the best known of these is ISOMAP [30]. Here
a neighborhood ball is used to convert data-points into a graph,
and Dijkstra’s algorithm is used to compute the shortest
(geodesic) distances between nodes. The matrix of geodesic
distances is used as input to MDS. The resulting algorithm has
been demonstrated to locate well-formed manifolds for a number
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of complex data sets. Related algorithms include locally linear
embedding [16] which is a variant of PCA that restricts the
complexity of the input data using a nearest neighbor graph, and
the Laplacian eigenmap that constructs an adjacency weight
matrix for the data-points and projects the data onto the principal
eigenvectors of the associated Laplacian matrix (the degree matrix
minus the weight matrix) [2]. Collectively, these methods are
sometimes referred to as manifold learning theories.

In this paper, we are interested in the problem of embedding
trees in a pattern space for the purposes of both visualization and
analysis (including clustering and classification). One of the
methods that has proved effective for the embedding and pattern
analysis of trees is spectral graph theory [6]. For instance, Dickinson
and his co-workers [25,14] have shown how graph-spectra can be
used to index shock-trees. There are two criticisms that can be
leveled at the spectral analysis of trees. First, graphs that are not
isomorphic can be co-spectral. As demonstrated by Schwenk et al.
[23,3], due to their sparse edge-structure this problem is accen-
tuated for trees. The second problem is the distortion produced by
the embedding. In [14] the metric embedding algorithm gives a

distortion that is proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log jAj

p
, where A is a set of

points in the original metric space, jAj is the number of points in

that space. In [9] the distortion is OðlðTÞ1=d
Þ, where lðTÞ is the

number of leaves in a tree T. So, when size of the trees becomes
large, then the distortion will also become large.

To overcome these problems in this paper we investigate
whether methods from manifold learning theory can be combined
with spectral graph theory to develop effective tools for tree
analysis. The idea is to use manifold learning methods to embed
the trees in a low-dimensional space, and to perform spectral
analysis on the co-ordinate data for the embedded tree-nodes. We
proceed as follows. We commence by using a strategy similar to
ISOMAP to embed the trees in a Euclidean pattern space. This is
done by computing a matrix of shortest (geodesic) distances
between nodes in the tree. We then apply MDS to the distance
matrix, and this embeds the individual nodes of the tree in a
Euclidean space. Once embedded in this space, we construct a
weighted Laplacian matrix for the nodes of the tree by
exponentiating the negative squared-distance between nodes.
The spectrum of eigenvalues of the Laplacian can be used for the
purposes of tree clustering and visualization.

2. Metric embedding of trees

The problem of embedding finite metric space into Euclidean
spaces, or other normed spaces, that approximately preserve the
metric is one that has received considerable attention in recent
years. A number of ways have been proposed for measuring the
quality of an embedding procedure. The distortion has been widely
accepted as a measure of the quality of the embedding. For a finite
metric space ðX; dÞ and cX1, there is an embedding j of X into Y

where for every two points x1; x2 2 X satisfy the condition

dðx1; x2ÞXkjðx1Þ � jðx2ÞkX
1

c
dðx1; x2Þ (1)

Such an embedding is said to be have distortion pc [16]. Recently
low-distortion embedding has provided powerful tools for
designing efficient pattern analysis algorithms. This is because
that they enable us to reduce problems defined over difficult
metrics to problems over much simpler ones.

The starting point for most metric embedding methods is
Bourgain’s [4] Lemma:

Any finite metric ðX; dÞ can be embedded into lp2 with po1
with distortion Oðlog jXjÞ.

We denote Rn equipped with lq norm by lnq. The Euclidean norm is
l2. The lq norm is defined as kðx1; . . . ; xnÞkq ¼ ð

P
jxij

qÞ
1=q. The

original bound on p proved by Bourgain was exponential with n

and too large to be of practical use. We seek to introduce an
embedding with a much lower distortion.

2.1. Metric embedding of trees by using isomap

We first define a suitable metric for the trees or graphs. For a
given graph G ¼ ðA;EÞ, A represents the nodes in the graph and E

represents the edge relations between the nodes. Suppose that D

is a metric on the graph G. The metric must satisfy the condition
that for any three vertices u, v and w 2 A, if Dðu; vÞ ¼ Dðw; vÞX0,
then Dðu;uÞ ¼ 0 and Dðu; vÞpDðu;wÞ þ Dðw; vÞ. There are many
ways to define metric distances on a graph. The best known is the
shortest-path metric Dðu; vÞ ¼ dðu; vÞ, which is the shortest path
distance between u and v for all u; v 2 A. In fact, if the graph G is a
tree, the shortest path between any two vertices is unique, and the
weights of the shortest paths between any two vertices will define
a metric Dð:; :Þ. Since we can treat trees as a special kind of graph,
we can use the shortest-path metric for trees.

Our goal is to find a low-distortion or distortion-free embed-
ding from the tree metric space into a normed space. Here we use
Isomap (isometric feature mapping) [30] as a way to solve the
low-distortion tree embedding problem. The idea behind Isomap
is to apply classical MDS [7] to map data points from their high-
dimensional input space to low-dimensional coordinates of a
nonlinear manifold. The key contribution is hence to apply MDS to
the pairwise distances not in the input Euclidean space, but in the
geodesic space of the manifold.

Although the method was originally devised for dimensionality
reduction, we can use it here for the low-distortion tree
embedding problem. Viewed as an isometric feature mapping,
Isomap is a mapping f : X ! Y from the observation space X to a
Euclidean feature space Y that preserves as closely as possible the
intrinsic metric structure of the observations, i.e. the distances
between observations as measured along geodesic (shortest)
paths of X [30]. The distortion c in this embedding is nearly 1.

For trees, the embedding procedure is straightforward. We first
construct the shortest path distance matrix S for each tree. Each
element di1 ;i2 in S is the shortest path distance between the pair of
nodes i1 and i2 of the tree. We embed each tree in a Euclidean
space by performing MDS on the matrix S.

2.2. Multidimensional scaling

MDS is a procedure which allows data specified in terms of a
matrix of pairwise distances to be embedded in a Euclidean space.
The pairwise geodesic distances between nodes di1;i2 are used as
the elements of an N � N dissimilarity matrix S, whose elements
are defined as follows:

Si1;i2 ¼
di1;i2 if i1ai2

0 if i1 ¼ i2

(
(2)

In this paper, we use the classical MDS method. The first step of
MDS is to calculate a matrix T whose element with row r and
column c is given by Trc ¼ �

1
2 ½d

2
rc � d̂2

r: � d̂2
:c þ d̂2

:: �, where d̂r: ¼

ð1=NÞ
PN

c¼1 drc is the average dissimilarity value over the rth row,
d̂:c is the similarly defined average value over the cth column and
d̂:: ¼ ð1=N2

Þ
PN

r¼1

PN
c¼1 dr;c is the average similarity value over all

rows and columns of the similarity matrix T.
We subject the matrix T to an eigenvector analysis to obtain a

matrix of embedding co-ordinates X. If the rank of T is k; kpN,
then we will have k non-zero eigenvalues. We arrange these k

non-zero eigenvalues in descending order, i.e. l1Xl2X � � �Xlk40.
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