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Abstract

An adaptive algorithm for function minimization based on conjugate gradients for the

problem of finding linear discriminant functions in pattern classification is developed. The

algorithm converges to a solution in both consistent and inconsistent cases in a finite number

of steps on several datasets. We have applied our algorithm and compared its performance

with the adaptive versions of the Ho-Kashyap procedure (AHK). We have also compared the

batch version of the algorithm with the batch mode AHK. The results show that the proposed

adaptive conjugate gradient algorithm (CGA) gives vastly superior performance in terms of

both the number of training cycles required and the classification rate. Also, the batch mode

CGA performs much better than the batch mode AHK.
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Notation

We use capital letters to denote matrices, lower case bold letters to denote vectors
and Greek letters to denote scalars. Superscript t denotes the transpose of a matrix
or a vector. k � k denotes the inner product norm. j � j denotes the absolute value for a
scalar and component-wise absolute value for a vector.
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1. Introduction

Perceptrons are among the earliest and most basic models of artificial neural
networks, yet they are central to many complex neural net applications. Though
perceptrons are limited in their power, they are still of importance because of their
inherent simplicity in classifying linearly separable problems. Training a perceptron
involves solving a set of linear inequalities. Several training algorithms for
perceptrons have been proposed in the literature. The LMS [16] (or Widrow–Hoff
rule), the perceptron rule [14], the Ho–Kashyap [10] and its adaptive versions AHK
I, AHK II and AHK III [8] are a few of the standard algorithms that are in use.

We follow the convention in [6]. A two class pattern classification problem for a
perceptron can be formulated as follows: suppose we have a set of m samples
a1; a2; . . . ; am some of which are labeled o1 and some o2 with each ai being an n-
dimensional vector (ai0 is a fixed input set to 1 for the bias). We want to use these
samples to determine a weight vector x in a linear discriminant function gðxÞ ¼ atx.
A sample ai is classified correctly if atix40 and ai is labeled o1 or if a

t
ixo0 and ai is

labeled o2. We can normalize the two-category case by replacing all of the samples
labeled o2 by their negatives thus making us look for a weight vector x such that
atx40 for all of the samples. Such a weight vector is called a separating vector or a
solution vector. Thus, it can be formulated as: find an n-vector x such that

atix40; i ¼ 1; . . . ;m.

Generally m4n in pattern classification problems. The above system of linear
inequalities is said to be consistent if a solution exists; otherwise, it is said to be
inconsistent. One can come across many inconsistent systems in the context of
pattern classification making them very important [6]. In such a case, we are
interested in a ‘‘solution’’ that is ‘‘best’’ in some sense.

Training a perceptron and a neural network, in general, involves adjusting the
weights to produce the desired output. Thus training a neural network is, in most
cases, an exercise in numerical optimization of a usually nonlinear objective
function. Several formulations and algorithms for these systems exist with the
prominent ones being the fixed increment rule [5], the linear programming (LP)
approach [5] and the Ho-Kashyap algorithm (HKA) [10,5,9].

Gradient descent and conjugate gradient are two widely used techniques for
solving a set of linear inequalities. The approach taken here is to define a criterion
function that is to be minimized and the vector x that minimizes the function is a
solution vector. Conjugate gradient-based methods are fast as compared to gradient
descent techniques and employ a series of line searches in weight or parameter space.
Duda et al. [6] summarize the conjugate gradient method in simple terms as:

In conjugate gradient approach, one picks the first descent direction (for e.g.,
simple gradient) and moves along that direction until the local minimum in error
is reached. The second direction is then computed: This direction, the ‘‘conjugate
direction’’, is the one along which the gradient doesn’t change its direction, but

ARTICLE IN PRESS

G. Nagaraja, R.P.J.C. Bose / Neurocomputing 69 (2006) 368–386 369



Download English Version:

https://daneshyari.com/en/article/413073

Download Persian Version:

https://daneshyari.com/article/413073

Daneshyari.com

https://daneshyari.com/en/article/413073
https://daneshyari.com/article/413073
https://daneshyari.com

