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a b s t r a c t

In the present work, we describe a mathematical model to generate human-like motion trajectories in
space.We use linear regression in a latent space to find themodel parameters from a set of demonstration
examples.

The learning procedure requires a relevant set of similar examples. The apprehended models encode
both the typical shapes of motion and their variability towards specific boundary conditions (BC). Wewill
show the added value of encoding both properties in a uniquemodel andwe apply this ability to common
problems of error compensation and target tracking.

The models allow us to describe human motion using expansion-function series (EFS), thus avoiding
typical stability issues that arise in the use of differential equationmodels. To copewith variable scenarios,
we show two specific algorithms that morph and adapt the evolution trajectory. In analogy to splines,
the EFS preserve an analytical structure on which we develop the optimisation steps. In such a way, we
managed to combine multiple single segments into complex motions that preserve continuity and may
simultaneously optimise other criteria.

In the present work, after having analysed similar tools, we present the basic model and its features.
Then we develop a robust tool to gather the model from examples, and to achieve real-time trajectory
adaptation. The achieved results will be analysed through an experimental analysis on data collected in a
ball catching experiment.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Many approaches exist so far to provide tools for modelling hu-
man and character motion through examples given by demonstra-
tion(s). These approaches mostly serve two types of applications:
character animation in computer graphics and formotion planning
in robots [1]. In the first case, the motions usually consider whole-
body animation tomoving visual avatars. In the second case, learn-
ing focuses on a limited set of body-coordinates, and uses the
generated trajectories to provide inputs for motion control algo-
rithms.

Motion programming, guided by demonstration examples, has
several motivations. Programming by demonstration is intuitive,
natural and easier even for non-skilled operators; it allows hu-
mans to exchange their knowledge in the same manner they do
in everyday life. Demonstrations are direct and cost-effective. Tra-
ditional motion programming requires the humans to describe
motion policies with respect to the environmental conditions.
Conversely, programming by demonstrations automatically mon-
itors the environmental conditions that cause actions. During a
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demonstration, the operator copes with several high-level prob-
lems and the learning procedure can catch the shown solution. In
such a way the learned models embed several features, such as:
complex dynamics, harmoniousmovements, knowledge of the en-
vironmental properties, suboptimal solutions (minimum torque or
energy), matching of boundary conditions, and cinematic ranges.

According to the application, the design of motion models
employs different requirements and performance criteria.

Character animation does not consider robust, physically
based, and real-time operations as strict constraints. Simulations
can be repeated several times to achieve satisfactory results.
The most relevant goal is to achieve the most realism that is
possible. Human examples provide information to estimate the
joint torques applied during the examples. Using these torques,
learning algorithms train articulated models similar to the human
dynamics [2,3]. These models help to avoid unrealistic artefacts
such as false equilibrium andmoon-walking [4], and to implement
complex environmental interactions such as manipulation [5],
cooperation [6], or constrained motions [7].

In robot motion planning, the success of the interaction is of
primary importance. The designed models control relevant real-
time operation and should never fail. In this condition, other
issues come to the designer’s attention, such as: the model
local and global stability [8], task refinement [9,10] and task
generalisation [11].

Several types of models have been proposed to implement
such functionalities. Most of them are represented as autonomous
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Nomenclature

ES Expansion Series
EFS Expansion Function Series
DMP Dynamic Motion Primitives
SEDS Stable Estimator Dynamic Systems
M1 Primary Motor Cortex
PPC Posterior Parietal Cortex
DST Discrete Sine Transform
qn,m(t) Generalised motion coordinate n, of examplemth
θ̃n,m(τ ) Generalised and time warped, motion coordinate n
θn,m(k) Generalised, discretised, time warped motion coor-

dinate n
Φ The motion function vector
P The function set coefficient parameters
O The number of harmonic components
H The model hyperparameters
N The samples per second of discretised trajectories
S, S0 Hyper-planes slopes and offset
εl Constraint condition
△ Sensed variation
δP Motion correction vector

systems (no inputs) and producing in output the observed
trajectory motion. Among these are:

• switching-linear-dynamic-systems (SLDS) [12] decompose
complex human motions through a sequence of models, each
onemodelledwith a linear time invariant discrete time (LTI-DT)
system. The training algorithm of these systems is similar to the
Hidden-Markov-Models’s one, and relies only onmotion obser-
vations. [13] adapted the algorithm to manage the dynamic na-
ture of the processes. SLDSs decompose complex motions into
more elementary chunks. However, this degree of autonomy
has somedrawbacks, such as the difficulty to checkmodel prop-
erties in the presence of environmental perturbations that alter
the model response;

• local models were introduced by Atkeson et al. [14]. Atkeson
approximated the behaviour of a complex system with a set
of simpler (local) models. Atkeson realised each model with a
neural network and consequently trained them. Vijayakumar
et al. [15] improved this approach and introduced a method
known as Locally Weighted Projection Regression (LWPR).
LWPR allows for on-line learning and higher dimension data
handling.

• Gaussian Mixture Regressions (GMR) [11] identify the dynamic
motion by using a set of probability distributions. GMRs use
state space (SS) models. In such a representation, the motion
dynamics is a multidimensional mathematical function. The
learning algorithm extracts this function from the process
observations. The algorithm uses example data to estimate
the shape of the state descriptive function. The learning
algorithm computes the derivatives of the trajectories to
produce a scatter plot. Then the algorithm maximises the
expectation of the computed plot. The algorithms use amixture
of multidimensional distributions and finds out the means
and variances that maximise the data expectation. The use
of derivatives in the GMR learning process introduces noise
into the learning procedure. To improve the overall stability of
the achieved model, Khansari-Zadeh and Billard [8] proposed
a modified learning procedure that makes use of learning
constraints to force the attractors of each linear subsystem to
share the common final target point;

• Dynamic Motion Primitives (DMPs) [16] represent motion
with a sequence of II-order attractor systems. An Expectation
Maximisation (EM) tool [10] identifies the systems’ parameters
(centres, stiffness and viscosity coefficients). DMPs always
generate stable systems. Further optimisation procedures can
manipulate DMP models to match with given boundary
conditions [15]. Recently, Reinforcement Learning [10] adapts
DMP models for dynamic constraints [17]. This procedure
operates after the model learning and introduces some
distortions in the motion. DMP may create a stable guidance
system from just one valid demonstration. The compensation
for changes in the environment is provided through a
computational algorithm and ignores any specific control
strategy that is present in the training data.

Several other modelling procedures are presently employed
in research, among these are: Gaussian-Process-Latent-Variable-
Models (GP-LVM) [18], Gaussian-Process-Dynamical-Models
(GPDM) [19], andModel-Predictive-Control Simulators (MPC-SIM)
[20]. A broad review of them has been discussed in [21].

In thiswork,wepresent an analyticalmodel that learnsmotions
from a limited set of human demonstrations. The model makes
use of parametric expansion-function series (ES) [22]. The ES
structure only depends on the number of components the designer
selects for learning according to clear rules. In contrast with
similar approaches [23], the present work specifically focuses
on the variability between tasks, as relevant information to be
exploited during the learning. We will introduce two elements of
novelty: the first relies in the ability of the learning algorithms to
benefit from different, yet homogenous examples. The second is an
adaptation tool that allows us to manage real-time changes on the
programmed trajectory. The resulting mathematical models allow
a fine degree of control on its boundary values so it can achieve
long and complex robot motions.

As we will see, the algorithm relies on robust linear regression.
This regression operates in the latent space defined by the ES
coefficients. This learning is similar to Support-Vector-Machine
and Kernel-Methods [24]. The major difference is the algorithm
uses a predefined function set that eases the introduction of
learning criteria (for example boundary conditions, energy of
motions, etc.) and real-time processing.

2. Motivation

In literature, a wide set of motion models for human motion
generation exist. Why should we start developing another model?
We startedworking in a skill transfer context. This context requires
us to capture and transfer the abilities between subjects [25,26].
We captured user motion from experts and created a dataset for
trainingmodels. Multi-modal interfaces used suchmodels tomake
novices practicing.We collected demonstrations fromboth experts
and trainers of several fields, such as sport (rowing [27]), surgery
(maxillo facial surgery [28]), industry (assembly and maintenance
operation [29]), and entertainment (juggling [30]). We found
that a common ground exists between all the above training
fields [31]. Using interaction with experts and data analysis we
decomposed complex motions into simpler motions [32]. The
decomposition proceeds through semantic analyses and machine
learning algorithms [33], such as Hidden Markov Models [34],
and Probabilistic Neural Networks [35]. We clustered the simpler
motions in classes considered to exhibit stationary properties
(task/environment). These classes were chosen by taking into
account the brain activities during the associated task control and
in order to maximise the likelihood that the brain only focuses on
a unique and stationary activity, such as limb coordination, point
reaching or force control.

Given the above specification we looked for models that fit for
the given tasks, and having the following features:
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