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Abstract

This paper develops two fault-tolerant control strategies for robot manipulators. The first is based on linear parameter-varying systems and
the second on Markovian jump linear systems. Firstly, it is shown that with the LPV approach post-fault stability is guaranteed only if the robot
stops completely after a fault detection. Then, with an underactuated configuration, the manipulator can be controlled appropriately. Secondly, it
is shown that with the fault-tolerant system based on Markovian jump linear systems, stability is guaranteed after a fault is detected even with the
robot still moving. This approach incorporates all manipulator configurations in a unified model. Both strategies have been implemented based on
output-feedbackH∞ controllers, which are the main focus of this paper. Experimental results illustrate the performance of each controller.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Parametric uncertainties and exogenous disturbances in-
crease the difficulty of reference tracking control for robot ma-
nipulators. H∞ control strategies for robot manipulators based
on state-feedback control have been used to minimize the dis-
turbance effects in system performance, [1]. However, the ve-
locity signal, considered as state, generally is not available
and can be obtained indirectly from a position measurement.
This procedure can introduce noises and delays, which decrease
tracking control efficiency. An output-feedback controller can
be used in order to avoid these problems. Two design techniques
for output-feedback gain-scheduling controllers with a guaran-
teedH∞ performance are proposed in [2] for linear parameter-
varying (LPV) systems. In this paper, the second design tech-
nique, named as Projected Characterization, is applied to an ac-
tual robot manipulator in its Quasi-LPV representation, which
means the parameters matrix of the model depends on the state.

Fault-tolerant systems for robot manipulators have been
developed by several authors; see, for instance, [3–5] and
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references therein. Free torque failures in robot manipulators,
where the torque supply in the motor breaks down suddenly,
can make these systems uncontrollable. Furthermore, if the
robot is working in hazardous or unstructured environments,
where repairs are not allowed, the requested movement must
be completed according to the fault configuration. When
a free torque failure occurs, the fully actuated manipulator
changes to an underactuated configuration. However, when
the manipulator changes, after a fault occurrence, from a
fully actuated to an underactuated configuration, the system
stability is not guaranteed with the deterministic output-
feedback controllers proposed in [2]. To use these controllers in
a fault-tolerant robot system, it is necessary to stop completely
the movement of all joints after the fault detection, restarting it
from zero velocity.

To avoid the necessity of stopping the robot when
a fault occurs, Markov theory is used in this paper to
characterize abrupt changes in the operation points of the
robotic manipulator. A model is developed based on linear
systems subject to abrupt variations, namely, Markovian jump
linear systems (MJLS) [6,7]. In order to formulate this model,
the manipulator dynamic is linearized around operation points,
and a Markovian model is developed to encompass the changes
of the operation points and the transition rate between fault
configurations [1,8]. With the proposed model, that represents

0921-8890/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2007.04.003

http://www.elsevier.com/locate/robot
mailto:siqueira@sc.usp.br
mailto:terra@sel.eesc.usp.br
mailto:cbuosi@sel.eesc.usp.br
http://dx.doi.org/10.1016/j.robot.2007.04.003


786 A.A.G. Siqueira et al. / Robotics and Autonomous Systems 55 (2007) 785–794

all manipulator configurations in a unified way, the output-
feedback H∞ controller for MJLS proposed in [9] is used
to guarantee stability after the occurrence of a sequence of
faults.

This paper is organized as follows: in Section 2, the
Quasi-LPV representations of fully actuated and underactuated
robot manipulators are presented, with experimental results,
using a deterministic output-feedback H∞ controller; in
Section 3, the fault-tolerant manipulator model and the control
system based on output-feedback H∞ controller for MJLS
are presented, and two fault sequences for the UArm II
robot are evaluated to demonstrate the effectiveness of this
approach.

2. Quasi-LPV representation of the manipulator

2.1. Fully actuated manipulator

The dynamic equations of a robot manipulator can be found
by Lagrange theory as

τ = M(q)q̈ + C(q, q̇)q̇ + Fq̇ + G(q), (1)

where q ∈ Rn is the joint position vector, M(q) ∈ Rn×n is the
symmetric positive definite inertia matrix, C(q, q̇) ∈ Rn×n is
the Coriolis and centripetal matrix, F ∈ Rn×n is the diagonal
matrix of frictional torque coefficients, G(q) ∈ Rn is the
gravitational torque vector, and τ ∈ Rn is the applied torque
vector. A parametric uncertainty can be introduced dividing
the parameter matrices M(q), C(q, q̇), F , and G(q) into a
nominal and a perturbed part, where M0(q), C0(q, q̇), F0, and
G0(q) are the nominal matrices, and ∆M(q), ∆C(q, q̇), ∆F ,
and ∆G(q) are the parametric uncertainties. A finite energy
exogenous disturbance, τd ∈ Rn , can also be introduced
resulting in

τ + δ(q, q̇, q̈, τd) = M0(q)q̈ + C0(q, q̇)q̇ + F0q̇ + G0(q),

(2)

with

δ(q, q̇, q̈, τd) = −(∆M(q)q̈ + ∆C(q, q̇)q̇

+∆Fq̇ + ∆G(q) − τd).

The state is defined as x =
[
q̇T qT

]T
, where q and q̇ are the po-

sitions and the velocities of the manipulator joints, respectively.
The Quasi-LPV representation of a fully actuated manipulator
is given by

ẋ = A(q, q̇)x + B(q)u + B(q)δ(q, q̇, q̈, τd), (3)

with,

A(q, q̇) =

[
−M−1

0 (q) (C0(q, q̇) + F0) 0
In×n 0

]
,

B(q) =

[
M−1

0 (q)

0

]
,

u = τ − G0(q).

2.2. Underactuated manipulator

Underactuated robot manipulators are mechanical systems
with fewer actuators than degrees of freedom. For this reason,
the control of passive joints is made considering the dynamic
coupling between them and the active joints. Here, the
manipulator is considered with n joints, in which n p are passive
and na are active joints. From [10], no more than na joints of
the manipulator can be controlled at every instant when breaks
are used in the passive joints. Let nu be the number of passive
joints that have not already reached their set point in a given
instant. If nu ≥ na , na passive joints are controlled and grouped
in the vector qu ∈ Rna , the remaining passive joints, if any,
are kept locked, and the active joints are grouped in the vector
qa ∈ Rna . If nu < na , the nu passive joints are controlled
applying torques in na active joints. In this case, qu ∈ Rnu

and qa ∈ Rna . The strategy is to control all passive joints
until they reach the desired position, considering the conditions
exposed above, and then turn on the brakes. After that, all the
active joints are controlled by themselves as a fully actuated
manipulator. The dynamic Eq. (2) can be partitioned as[

τa
0

]
+

[
δa
δu

]
=

[
Maa Mau
Mua Muu

] [
q̈a
q̈u

]
+

[
Caa Cau
Cua Cuu

] [
q̇a
q̇u

]
+

[
Faa 0
0 Fuu

] [
q̇a
q̇u

]
+

[
Ga
Gu

]
, (4)

where the indices a and u represent the active and free (breaks
not actioned) passive joints, respectively. Factoring out the
vector q̈a in the second line of (4) and substituting in the first
one, results in

τa + δ(q, q̇, q̈, τd) = M0(q)q̈u + C0(q, q̇)q̇u + F0(q)q̇u

+ D0(q, q̇)q̇a + G0(q), (5)

with

M0(q) = Mau − Maa M−1
ua Muu,

C0(q, q̇) = Cau − Maa M−1
ua Cuu,

D0(q, q̇) = Caa − Maa M−1
ua Cua + Faa,

F0(q̇) = −Maa M−1
ua Fuu,

G0(q) = Ga − Maa M−1
ua Gu,

δ(q, q̇, q̈, τd) = δa − Maa M−1
ua δu,

where all matrices and vectors have appropriate dimensions,
depending on the numbers of active, na , and free passive joints,
nu . The state is defined as xu =

[
q̇T

u qT
u

]T
. Hence, a Quasi-LPV

representation of the underactuated manipulator can be defined
as follows

ẋu = A(q, q̇)xu + B(q)u + B(q)δ(q, q̇, q̈, τd), (6)

with

A(q, q̇) =

[
−M

−1
0 (q)

(
C0(q, q̇) + F0(q)

)
0

I 0

]
,

B(q) =

[
M

−1
0 (q)

0

]
,

u = τa − D0(q, q̇)(q̇a − G0(q)).
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