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a b s t r a c t

The paper studies and compares nonlinear Kalman Filtering methods and Particle Filtering methods
for estimating the state vector of Unmanned Aerial Vehicles (UAVs) through the fusion of sensor
measurements. Next, the paper proposes the use of the estimated state vector in a control loop for
autonomous navigation and trajectory tracking by the UAVs. The proposed nonlinear controller is derived
according to the flatness-based control theory. The estimation of the UAV’s state vector is carried
out with the use of (i) Extended Kalman Filtering (EKF), (ii) Sigma-Point Kalman Filtering (SPKF), (iii)
Particle Filtering (PF), and (iv) a new nonlinear estimation method which is the Derivative-free nonlinear
Kalman Filtering (DKF). The performance of the nonlinear control loop which is based on these nonlinear
state estimation methods is evaluated through simulation tests. Comparing the aforementioned filtering
methods in terms of estimation accuracy and computation speed, it is shown that the Sigma-Point Kalman
Filtering is a reliable and computationally efficient approach to state estimation-based control, while
Particle Filtering is well-suited to accommodate non-Gaussian measurements. Moreover, it is shown
that the Derivative-free nonlinear Kalman Filter is faster than the rest of the nonlinear filters while also
succeeding accurate, in terms of variance, state estimates.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear estimation based on probabilistic inference forms a
core component inmostmodern guidance and navigation systems.
The estimator fuses observations from multiple sensors with
predictions from a nonlinear dynamic state-space model of the
system under control. The most widely used algorithm for multi-
sensor fusion is the Extended Kalman Filter (EKF); however this is
based on linearization of the system dynamics, which results in a
suboptimal application of the recursive estimation of the standard
Kalman Filter [1,2]. Moreover, the EKF follows the assumption of
Gaussian process/measurement noise which does not always hold.
These can seriously affect the performance of the state estimation
and even lead to divergence. Consequently, the performance of a
control loop that uses an EKF-based estimate of the system’s state
vector can, in some cases, be unsatisfactory.

To overcome the EKF flaws, two different approaches to
state estimation of nonlinear dynamical systems are proposed:
(i) Sigma-Point Kalman Filters (SPKF) and particularly the
Unscented Kalman Filter (UKF), and (ii) Particle Filters. SPKF
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methods have proven to be superior to EKF in a wide range of ap-
plications.Whereas the EKF can be viewed as a first order lineariza-
tion method, the UKF achieves higher accuracy, without requiring
additional computational effort. Furthermore, implementation of
the UKF is substantially easier and unlike the EKF case it does not
need any analytic derivation or computation of Jacobian matrices
[3–7]. The state distribution in UKF is approximated by a Gaus-
sian random variable, which is represented using a minimal set of
suitably chosen weighted sample points. These sigma points are
propagated through the true nonlinear system, thus generating the
posterior sigma-point set, and the posterior statistics are calcu-
lated. The sample points progressively converge to the true mean
and covariance of the Gaussian random variable.

The Particle Filter (PF) is a non-parametric state estimator
which unlike the EKF does not make any assumption on the
probability density function of the measurements [8–11]. The
concept of particle filtering comes from Monte-Carlo methods.
The Particle Filter has improved performance over the established
nonlinear filtering approaches (e.g. the EKF), since it can provide
optimal estimation in nonlinear non-Gaussian state-spacemodels.
Particle filters can approximate the system’s state sufficiently
when the number of particles (estimations of the state vectors
which evolve in parallel) is large. The PF also avoids the calculations
associated with the Jacobians which appear in the EKF equations
[12]. The main stages of the PF are prediction (time update),
correction (measurement update) and resampling for substituting
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the unsuccessful state vector estimates with those particles
that have better approximated the real state vector. Comparing
SPKF and PF methods, the latter require more sample points to
approximate the state distribution. However, the PF is a non-
parametric filter which can be applied to any kind of state
distribution, while the SPKF state estimators are still based on the
assumption of a Gaussian process and measurement noise.

Aiming also at finding more efficient implementations of
nonlinear filtering, in this paper a Derivative-free approach to
Kalman Filtering is introduced and applied to state estimation-
based control of nonlinear dynamical systems, such as UAVs.
In the Derivative-free nonlinear Kalman Filtering method (DKF)
the system is first subject to a linearization transformation
that is in accordance to the differential flatness theory and
next state estimation is performed by applying the standard
Kalman Filter recursion to the linearized model. The proposed
method provides estimates of the state vector of the nonlinear
system without the need for derivatives and Jacobians calculation.
By avoiding linearization approximations, the proposed filtering
method improves the accuracy of estimation of the system state
variables, and results in smooth control signal variations and in
minimization of the tracking error of the associated control loop.
Moreover, the Derivative-free nonlinear Kalman Filter appears
to be faster than the previously mentioned nonlinear filtering
methods (i.e. EKF, UKF and PF) while also providing very accurate
(in terms of variance) state estimates. The application of the
Derivative-free nonlinear Kalman Filter to the UAVmodel confirms
and extends the initial results about the filter’s performance given
in [13–15].

As a case study, the paper examines the application of the afore-
mentioned nonlinear filtering methods to the problem of sensor
fusion-based guidance and navigation of unmanned aerial vehicles
(UAVs) [5]. Sensor fusion in land navigation systems has been stud-
ied in [16], while typical sensors in UAV navigation systems can
be rate-gyros and accelerometers, barometric altimeters andmag-
netic compasses. GPS position and velocity measurements pro-
vide additional information about the UAV’smotion.Measurement
systems for UAV navigation have been analyzed in [17–20], while
different control approaches for UAV flight control have been an-
alyzed in [21–24]. The filtering approaches examined in this pa-
per are used to fuse measurements coming from different sources
(measurements fromon-boardUAV’s sensors and/or GPSmeasure-
ments), thus providing estimates of the state vector of the UAV.
The implementation of UAV control throughprior estimation of the
UAV’s state vector fromdistributed sensormeasurements has been
analyzed in [17]. Simulation experiments are carried out to evalu-
ate the performance of the nonlinear filters and of the associated
state estimation-based UAV control loops.

The structure of the paper is as follows: in Section 2
the principles of flatness-based control are explained and the
application of flatness-based control to the UAVmodel is analyzed.
In Section 3 the Extended Kalman Filter is introduced as a basic
filtering approach for nonlinear dynamical systems. In Section 4
estimation of the UAV’s state vector with the use of Sigma-
Point Kalman Filters, when fusing measurements that come from
different sensors, is presented. In Section 5 the application of
Particle Filtering for estimation of the state vector of the UAV
through fusion of distributed sensor measurements is analyzed.
In Section 6 it is explained how Derivative-free nonlinear Kalman
Filters can be designed in accordance to the differential flatness
theory and how they are applied for sensor fusion and state
estimation in the UAV case. In Section 7 simulation tests are
presented to evaluate the performance of the filtering-based
control loops when the UAV’s state vector is estimated with the
use of the aforementioned nonlinear filters. Finally in Section 8
concluding remarks are stated.

2. Flatness-based control for UAVs

2.1. Differential flatness theory for UAV control

Trajectory tracking by Unmanned Aerial Vehicles with the
use of nonlinear control methods is examined first. Various
approaches have been proposed for the UAV control among
which Lyapunov functions-based control [20,21] andmodel-based
predictive control [19,24]. In this paper it will be shown that
flatness-based control is a suitable approach for implementing
autonomous navigation of aerial vehicles. Flatness-based control
theory stems from differential flatness and has been successfully
applied to several nonlinear dynamical systems. Flatness-based
control for a UAVhelicopter-likemodel has been developed in [25],
assuming that the UAV performsmaneuvers at a constant altitude.
The same kinematicmodel has been used in several studies onUAV
trajectory tracking and control [22,23].

A dynamical system is considered to be differentially flat if the
following properties hold: (i) the so-called flat output exists, i.e. a
new variable which is expressed as a function of the system’s state
variables. The flat output and its derivatives should not be coupled
in the formof an ordinary differential equation, (ii) the components
of the system (i.e. state variables and control input) can be
expressed as functions of the flat output and its derivatives [26,27].
Differential flatness is a property characterizing classes of systems.
In certain cases expressing all system variables as functions of
the flat output and its derivatives enables transformation to a
linearized form for which the design of the controller becomes
easier. In other cases by showing that a system is differentially flat
one can easily design a reference trajectory as a function of the so-
called flat output and can find a control law that assures tracking
of this desirable trajectory [27–29].

Flatness-based control has been successfully applied for steer-
ing autonomous vehicles andparticularlyUAVs alongdesirable tra-
jectories [27,28]. It this paper it is assumed that an helicopter-like
UAV, performsmaneuvers at a constant altitude. Then, one obtains
the following UAV kinematics [25]

ẋ = v cos(θ), ẏ = v sin(θ), θ̇ = ω = q1
v̇ = q2, ḣ = 0

(1)

where (x, y) is the desired inertial position of the UAV, θ is
the UAV’s heading (angle between the transversal axis of the
UAV and axis OX), ω is the UAV’s rate of change of the heading
angle, v is the UAV’s velocity, h is the UAV’s altitude, and q1, q2
are control inputs constrained by the dynamic capability of the
UAVs (namely the heading rate constraint and the acceleration
constraint, respectively). There is an equivalence between the
UAV’s kinematic model and the model of a unicycle robot. The
flat output is the cartesian position of the UAV’s center of gravity,
and is denoted as η = (x, y). Then, the flatness-based dynamic
compensator is

ξ̇ = u1 cos(θ) + u2 sin(θ), v = ξ

ω =
u2 cos(θ) − u1 sin(θ)

ξ

(2)

where

u1 = ẍd + kp1(xd − x) + kd1(ẋd − ẋ)
u2 = ÿd + kp2(yd − y) + kd2(ẏd − ẏ).

(3)

It has been shown (see [13,30]) that using the change of
coordinates

x1 = x, x2 = ẋ = ξ cos(θ)

x3 = y, x4 = ẏ = ξ sin(θ)
(4)
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