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a b s t r a c t

Modern robotic systemsperformelaborate tasks in complicated environments andhave close interactions
with humans. Therefore fault detection and isolation (FDI) schemes must be carefully designed and
implemented on robotic systems in order to guarantee safe and reliable operations. In this paper, we
propose a hierarchical multiple-model FDI (HMM-FDI) scheme to detect and isolate actuator faults of
robot manipulators. The proposed algorithm performs FDI in stages and refines the associated model set
at each stage. Consequently only a small number of models are required to detect and isolate various
types of unexpected actuator faults, including abrupt faults, incipient faults, and simultaneous faults. In
addition, the computational load is alleviated due to the reduced-sized model set. The relation between
the fault detection stage of the HMM-FDI scheme and the likelihood ratio test is explicitly revealed and
theoretical upper bounds of the false alarm and missed detection probabilities are evaluated. Then we
conduct experiments to demonstrate the ability of the HMM-FDI scheme in successful and immediate
detection and isolation of actuator faults.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Robotic systems are widely used to carry out various missions
that require high precision, reliability and safety. Typical robotic
applications are, to namebut a few, industrialmanufacturing, dem-
ining, hazardouswaste cleanup, and outer space exploration. In ad-
dition, recent advances in intelligent robots have inspired a large
number of emerging applications such as housekeeping, medical
surgeries, and the elderly home care. In order to accomplish these
increasingly elaborate tasks, modern robots turn into ever com-
plicating systems. However, the more complex the robotic sys-
tems are, the more likely they are to break down. Unfortunately,
the unexpected breakdown may either incur a cost that is too
high to be affordable (e.g. interruption of a space mission), or even
worse, cause damage to users and their property due to close in-
teractions with humans and environments. Therefore, faults of
robotic systems must be taken care of properly in order to guaran-
tee their safe operation. Procedures for dealing with faults include
(i) detecting the occurrences of faults (fault detection), (ii) indicat-
ing faulty components (fault isolation), (iii) identifying features of
faults (fault identification), and (iv) accommodating faults by ded-
icated control algorithms (fault tolerant control).
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(M.-C. Weng).

Fault detection and isolation (FDI) schemes have been inves-
tigated over the past three decades [1–3], and have been suc-
cessfully applied to various safety-critical systems such as nuclear
plants [4], flight control systems [5], vehicular drive-by-wire sys-
tems [6], automated highway systems [7,8], and robotic systems
[9,10]. Commonly used techniques include state and parame-
ter estimation [11–17], parity equations [18,19], neural networks
[20,21], and multiple-model (MM) approaches [22–26]. On the
other hand, fault tolerant control (FTC) can be realized with or
without explicit FDI schemes [7,27–29]. In particular, applying FTC
to robotic systems has drawn a lot of attention in the past [30–32].

In the aforementioned studies, faults are represented as either
additive signals or multiple models. The former usually results in
a complicated fault signal which is a function of the system state.
Hence the fault signal cannot be treated as external disturbances,
making it challenging to analyze and synthesize the FDI schemes.
On the other hand, the latter represents each fault by a specific
model that might be simple and structurally different from one
another. Thus the multiple-model fault representation is more
flexible and powerful, leading to the recent development of
multiple-model FDI (MM–FDI) schemes.

For example, eight fault models were established for the air-
intake system of a turbo-charged engine [22]; then structured
hypothesis tests were used to detect the occurrences of faults. The
multiple-model adaptive estimation (MMAE) algorithm, which
runs parallel state estimators and calculates the probability of
each model by Bayes’ rule, has been applied to the flight control
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system [33]. To improve the performance of multiple-model
FDI (MM–FDI) schemes, the interacting multiple-model (IMM)
algorithm was investigated [23] and applied to the satellite’s
attitude control system [24] as well as the aircraft lateral motion
control system [25].

The aforementioned MM–FDI schemes enumerate all de-
tectable and isolatable faults in the model sets. If an unexpected
fault, i.e. a fault without a corresponding model in the model set,
has occurred, the results of the MM–FDI schemes become un-
predictable. Therefore, a large model set is required in order to
detect and isolate as many faults as possible. Unfortunately, it is
difficult, if not impossible, to design an exhaustive model set that
contains every possible fault. Take the partial actuator fault [26]
for example. The associated fault model incorporates a fixed mul-
tiplicative ‘‘effective factor’’ in the actuator’s output, representing
the reduction of the actuator’s gain. Since the effective factor can
be any number between 0 and 1, it is impossible to include all par-
tial fault models in the model set. In fact, we are restricted to work
on a finite model set, and we will show in Section 3 that expand-
ing the model set results in a considerable increase of the compu-
tational load. Even though the computational load is affordable, a
largemodel set is not recommended because somemodelsmay be-
come indistinguishable from the input–output point of view, and
then the MM–FDI schemes are unable to select the fittest model
from the model set with ‘‘sufficient confidence’’. In short, MM–FDI
schemes face a dilemma of avoiding unexpected faults by using a
fine-grained model set while maintaining a tractable algorithm by
limiting the size of the model set.

To tackle themodel set design problem, Ru and Li [26] proposed
the IM3L algorithm that uses the IMM algorithm for estimating
system state and the expectation-maximization (EM) algorithm for
updating model parameters. Therefore the fault models are self-
adaptive, relieving the need for a large model set. However only
(multiple) abrupt total and partial faults were considered in [26].

In this paper, we propose a hierarchical multiple-model FDI
(HMM-FDI) scheme as a solution to the model set design problem
and apply it to detect and isolate actuator faults of robot
manipulators. The ultimate goal of the proposed FDI scheme is
to find out faulty joints in an early stage such that fault tolerant
strategies can be launched in time to guarantee safe operation
of the robotic system. In other words, any faulty joints must be
indicated before the robotic system significantly deviates from its
nominal performance, no matter what kinds of faults have taken
place. To achieve this goal, the proposed HMM-FDI scheme works
in stages. At each stage, the model set is refined such that only
a small number of models are required. Therefore the HMM-FDI
scheme avoids the need for enumerating all possible faults in the
model set, while is endowed with the ability to detect and isolate
various types of unexpected actuator faults, including abrupt faults,
incipient faults, and simultaneous faults in a computationally
efficient way. The relation between the fault detection stage of
the HMM-FDI scheme and the likelihood ratio test is explicitly
revealed and theoretical upper bounds of the false alarm and
misseddetectionprobabilities are evaluated. Then experiments are
conducted to verify the performance and efficiency of the HMM-
FDI scheme.

The remainder of this paper is organized as follows: Section 2
introduces the dynamic and kinematic models of the robot
manipulator. Section 3 illustrates the notions of the MM–FDI
methods and the related techniques. The HMM-FDI scheme is
proposed in Section 4 while experimental results are presented in
Section 5. Section 6 concludes this paper.

2. Dynamic and kinematic models of the manipulator

The dynamic equation of an n-joint manipulator is given as
follows [34]:

M(q(t))q̈(t)+ C(q(t), q̇(t))q̇(t)+ G(q(t))+ F(q̇(t)) = τ(t) (1)

where q(t), q̇(t), q̈(t) ∈ Rn are vectors of joint positions, veloci-
ties, and accelerations at time t , respectively.M(q(t)), C(q(t), q̇(t))
∈ Rn×n are the inertia matrix, and Coriolis and centrifugal matrix
respectively. G(q(t)), F(q̇(t)), τ(t) ∈ Rn denote the gravitational
torque vector, friction vector, and control torque vector, respec-
tively. For clarity, we will drop the notational dependence of all
variables on t as long as it leads to no confusion.

Define the state vector of the manipulator as x = [qT , q̇T
]
T .

Because the proposed HMM-FDI scheme will be derived in the
discrete-time domain, we apply the Euler’s method to convert
(1) to its discrete-time counterpart and obtain the following state
space representation:

xk+1 = xk + h
[

q̇k

f(xk, τk)

]
+

[
wp

k

wv
k

]
(2)

where f(xk, τk) = M−1(qk) [τk − C(qk, q̇k)q̇k − G(qk)− F(q̇k)] , h
is the sampling time, and the subscript k denotes the kth sample.
wk = [(wp

k)
T , (wv

k)
T
]
T is the process noise representing the model

uncertainties and the approximation error due to the Euler’s
method.

We assume that only the joint positions are measurable. Thus
the output equation of the manipulator is:

yk = Cxk + vk (3)

where C = [In×n0n×n] and vk is the measurement noise which is
assumed to be Gaussian distributed white noise with zero mean
and covariance matrix R.

In the context of the HMM-FDI scheme, the dynamic model
consists of (2) and (3) along with the assumption that wk is
Gaussian distributed noise with zero mean and covariance matrix
QD

k . In addition, we assume that components of wk are mutually
uncorrelated, i.e. QD

k is a diagonal matrix. Note that we allow the
covariance matrix to be time-varying.

Remark 1. It should be noted that the actual distribution of wk
may not be Gaussian; nevertheless the dynamic model assumes
that wk is Gaussian distributed and mutually uncorrelated, and
treats the covariancematrixQD

k as a tunable parameter of the model,
not a physical quantity of the robot. By tuning QD

k we change the
‘‘accuracy’’ of the dynamic model. If QD

k is set to an inappropriate
value, then the dynamic model behaves poorly in predicting the
motion of the manipulator; however, it is our intention to reduce
the ‘‘relative accuracy’’ of one model w.r.t. the others for the
purpose of fault detection and isolation. See Section 4 for more
details.

On the other hand, we can predict the motion of the
manipulator through the kinematic relations of joints. By kinematic
relationwemean that the joint velocity is the first derivative of the
joint position. Approximating the kinematic relation by the Euler’s
method yields

qk+1 = qk + hq̇k + ξ
p
k (4)

where ξ
p
k is the approximation error due to the Euler’s method. On

the other hand, if the differentiation relation is approximated by
the backward difference equation, then we have

q̇k+1 =
qk+1 − qk

h
+ ξvk =


qk + hq̇k + ξ

p
k


− qk

h
+ ξvk (5)

where ξvk is the approximation error due to the backward
difference equation. Combining (4) and (5) yields the following
equation:

xk+1 = AKxk + GKξk (6)
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