
Robotics and Autonomous Systems 60 (2012) 296–308

Contents lists available at SciVerse ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Linear-time robot localization and pose tracking using matching signatures
Asim Kar ∗

Division of Remote Handling and Robotics, BARC, India

a r t i c l e i n f o

Article history:
Received 25 March 2010
Received in revised form
8 August 2011
Accepted 18 November 2011
Available online 26 November 2011

Keywords:
Global localization
Data association
SLAM
Multi-hypothesis tracking
Signature matching
Feature-based navigation

a b s t r a c t

A feature-based method for global localization of mobile robot using a concept of matching signatures is
presented. A group of geometric features, their geometric constraints invariant to frame transform, and
location dependent constraints, together are utilized in defining signature of a feature. Plausible global
poses are found out by matching signatures of observed features with signatures of global map features.
The concept of matching signatures is so developed that the proposed method provides a very efficient
solution for global localization. Worst-case complexity of the method for estimating and verifying global
poses is linear with the size of global reference map. It will also be shown that with the approach of
random sampling the proposed algorithm becomes linear with both the size of global map and number of
observed features. In order to avoid pose ambiguity, simultaneous tracking of multiple pose hypotheses
staying within the same framework of the proposed method is also addressed. Results obtained from
simulation as well as from real world experiment demonstrate the performance and effectiveness of the
method.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

One of the most studied problems in mobile robotics is SLAM
(Simultaneous Localization and Map Building) [1–7]. Localization
and data association are two integral parts of SLAM. Mobile
robot localization is broadly divided into two categories: position
tracking and global localization. In position tracking [7–9], the
initial estimate of the robot pose is known and periodical
correction in its pose is done by searching correspondences of
sensor data in a small region in the given map. During continuous
tracking, pose uncertainty is usually small, search space is limited
around the pose estimate and many position tracking methods
proposed have beenproven to be precise and efficient. But, they fail
if the pose error grows large, the initial robot location is unknown,
or the robot is lost, which is known as the kidnapped robot
problem [10]. On the other hand global localization [10–13] finds
a robot pose from scratch but is a more complex problem and is
found to be very expensive in terms of both computation time and
memory requirements.Moreover, itmay suffer from the perceptual
aliasing problem, i.e., if the environment contains many regions of
similar shape, it finds multiple solutions and selecting the correct
one out of many similar choices is difficult. In order to overcome
such ambiguity, a global localization system is expected to have the
capacity of tracking distinct multiple pose hypotheses in parallel.

Global localization with the capacity of multi-hypothesis
tracking is studied with the approaches of multi-modal Gaussian
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distributions [14–16], ML (Markov localization) [10], and MCL
(Monte Carlo localization) [11]. ML represents robot’s belief by a
posterior probability density over all pose states distributed across
a 3-D grid. Though ML is very robust and fail safe, it is extremely
slow and unfit for real-time application. A tradeoff between pose
accuracy (grid resolution) and computational efficiency as well
as various heuristics are to be adopted to run it in reasonable
time. MCL overcomes disadvantages of ML by representing robot’s
belief by a fewer number of weighted samples. However, care
must be taken in selecting the sample size as fewer samples
might prematurely collapse to a wrong belief. Moreover, naive
implementation of MCL cannot handle the kidnapped robot
problem. Several extensions have been suggested to overcome
such shortcomings (see [17] for details). On the other hand MCL
is multi-modal, fast, and can cope with sensor uncertainty easily.
It is probably one of the most popular and widely used multi-
hypothesis localization algorithms. Other approaches like [18]
propose hybrid methods to combine advantages of extended
Kalman filters and POMDP. Reverse Monte Carlo Localization [19]
aims to combine ML and MCL to take advantage of both and
overcome their disadvantages.

Another approach is search in correspondence space [20–24]
where geometric features such as points, lines, arcs, etc., are
extracted from high-dimensional sensor data and are matched
against stored map features. A key advantage of this approach is
that it enables us to maintain exactly as many pose hypotheses as
necessary and as few as possible. The most employed technique
to search correspondence space is the interpretation tree search
approach [25] and the worst case complexity of interpretation
tree search is exponential, i.e., O((m + 1)n) including the star
node, where n is the number of observed features and m is the
number of map features. However, in reality only a small portion
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of the tree is subject to the interest of search concerning current
sensory observation. Different location dependent and location
independent geometric constraints, individual compatibility and
joint compatibility [20–22,26] are utilized in order to prune
the tree to reduce the search space. While a physics-based
sonar model is used in [24] to derive geometric constraints, the
global interpretation tree is divided into two sub-trees based on
horizontal and vertical edges in [23]. The worst-case search in
case of spurious measurements is still exponential. To overcome
this, [27] introduces a concept of locality and achieves O(m(c +

1)n) worst-case complexity, which is linear with the size of the
global reference map and exponential with the size of locality c(≤
m). With consideration of grid sampling, individual feature-
to-feature correspondence and a strategy of voting, worst-case
complexity linear both in number of map features (m) and in
number of observed features (n) is achieved in [28] at the cost
of pose accuracy (pose accuracy depends on grid resolution) and
true positive solutions. Another technique used to represent the
correspondence space is by MCG (Maximum Common Graph)
in which nodes are unary compatible pairings and undirected
edges are binary compatible pairings [5]. Finding the largest set
of unary–binary compatible pairings is equivalent to searching
for a maximum clique in the correspondence graph. Searching
for a maximum clique in a graph is NP complete in general.
Given the correspondence graph is very sparse, many efficient
implementations can be found in the literature (see [29,30]
for example). CCDA (Combined Constraint Data Association)
proposed in [5] first constructs a unary–binary compatible MCG
and then searches for a maximum clique in the common graph.
Computational complexity in constructing MCG reported in [5] is
quadratic with the size of the map. Average case computational
complexity of maximum clique search is quadratic with the node
size, if prior pose estimation is available. Otherwise computational
complexity without prior pose estimation is not well defined.

In this work we propose a simple, easy to implement,
and very efficient feature-based method for multi-hypothesis
localization using a concept of matching signatures. We consider
a number of features and their geometric constraints together
in order to interpret n measurements (throughout this paper we
interchangeably use the terms measurement, local feature, and
observed feature to refer to geometric features extracted from
sensor data) as n observed signatures and m map features as m
reference signatures. We generate all plausible global poses by
matching observed signatures with signatures of map features
and show that worst-case computation in order to generate all
plausible global robot poses and verifying them is O(n3mc2). Here
c ≤ m but does not refer to size of a local region in the map
that is generally determined depending on either sensormaximum
range or independent local maps [31] or simultaneous visibility
of features [27]. We include the entire global map and make use
of location independent binary constraints to determine c with
very little computation cost. Details are presented in Section 4.
We will also show that with approach of random sampling as
proposed in [27] our algorithm becomes linear with both the size
of the global map (m) and the size of the measurements (n).
Section 2 provides a definition of signature and Section 3 deals
with the concept of matching signatures and in turn with the
problems of data association, hypothesis (hypothesis always refers
to pose hypothesis in this paper) generation and verification. The
global pose generation algorithm, the computational complexity
of it and the multi-hypothesis tracking algorithm are described in
Section 4. Run time efficiency of thismethod is also comparedwith
the JCBB-based (Joint Compatibility Branch and Bound) relocation
algorithmproposed in [27], using simulated andDLR data sets [32].
Comparison results and results of multi-hypothesis tracking with
a real robot are discussed in Section 5, followed by conclusions in
Section 6.

2. Definition of a signature

Let F = {fi}ni=1 be a set of geometric features in a common
reference frame. To each feature fi in F we associate a signature
si. A signature si is a tuple that consists in a set of unary constraints
Ui, a set of binary constraints Bi, and a set of location-dependent
constraints Ri(x),
si(x) = {Ui, Bi, Ri(x)}. (1)

Unary constraint applies to intrinsic properties of a feature.
Examples are feature type, color, texture or dimension such as
length or width. Let ui encodes unary constraint of feature fi, and
suppose fi has a total nu number of unary constraints, then

Ui = {uj}
nu
j=1. (2)

Unary constraints are defined for line segments (segment length)
and circular features (radius). They are undefined for (x, y)-point
features. In case of multiple feature types, the type itself can also
be considered a unary constraint.

A binary constraint always applies to a pair of features fi − fj.
Examples include measures such as relative distance or relative
angle. Let bij denotes a binary constraint (distance of fj from fi, angle
of fj with respect to fi, etc.) between features fi and fj, then there are
n possible binary constraints of feature fi in F

Bi = {bij}nj=1. (3)

Both, unary and binary constraints are location independent,
that is, they are invariant to the frame transform of the features
in F . In contrast, a location-dependent constraint is a function of
a pose x = (x, y, θ)T . Let x define a reference frame in which
all features in F are expressed. Then, the location dependent
constraint of all features in F is defined as

Ri(x) = {rj(x)}nj=1 (4)

where rj(x) denotes location of the feature fj in frame x and is
expressed depending upon its type. For an example of a point
feature, it can be the (x, y) location in the frame. For a line feature,
it can be expressed by (d, α), where d is the normal distance of the
line from the origin of frame x andα measures angle of that normal
line with respect to the positive x axis of frame x.

Though unary constraint, binary constraint and location
dependent constraint validate compatible associations between
measurements and map features, they do not confirm whether
a measurement is at least partially within the region occupied
by its target map feature. This is especially relevant for finite-
dimension features such as line segments, arcs, etc. Such a problem
is overcome by extension constraint, details of which can be found
in [22,33]. An extension constraint, though, is not included in the
definition of signature but is used explicitly during signature-based
data association processes.

3. Signature-based data association, hypothesis generation and
verification

This section deals with the process of matching two signatures
and in turn with the problems of data association, hypothesis
generation and hypothesis verification. The proposed signature
matching method involves two steps: (a) generation of hypothesis
using location independent unary and binary constraints, and
(b) verification of hypothesis that includes searching of compatible
supporting set of pairings using both location dependent and
location independent constraints. The process of matching two
signatures is illustrated in Fig. 1. To describe this process let us
assume that a signature si(o) = {Ui, Bi = {bij}nj=1, Ri(o) =

{rj(o)}nj=1} of an observed feature ei (‘o’ refers to local frame
attached with the robot body) is to be compared with a signature
sk(r) = {Uk, Bk = {bkl}ml=1, Rk(r) = {rl(r)}ml=1} of a map feature fk
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