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Real-time implementation of airborne inertial-SLAM

Jonghyuk Kima,∗, Salah Sukkariehb

a College of Engineering and Computer Science, The Australian National University, ACT 0200, Australia
b ARC Center of Excellence for Autonomous Systems, The University of Sydney, NSW 2006, Australia

Received 1 October 2005; received in revised form 1 April 2006; accepted 1 June 2006
Available online 26 September 2006

Abstract

This paper addresses some challenges to the real-time implementation of Simultaneous Localisation and Mapping (SLAM) on a UAV
platform. When compared to the implementation of SLAM in 2D environments, airborne implementation imposes several difficulties in terms of
computational complexity and loop closure, with high nonlinearity in both vehicle dynamics and observations. An implementation of airborne
SLAM is formulated to relieve this computational complexity in both direct and indirect ways. Our implementation is based on an Extended
Kalman Filter (EKF), which fuses data from an Inertial Measurement Unit (IMU) with data from a passive vision system. Real-time results from
flight trials are provided.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Airborne SLAM; Inertial Measurement Unit (IMU); Vision; UAV

1. Introduction

Unmanned Aerial Vehicles (UAVs) have attracted much
attention from robotics researchers in both civilian and defense
industries over the past few years. They can perform various
tasks in highly dangerous environments, where access by
human operators or from ground vehicles are limited. There
is a broad spectrum of applications, ranging across academic
research, resource monitoring, search and rescue, bush fire
monitoring and information gathering. Advances in cost
effective inertial sensors and accurate navigation aids, such
as the Global Navigation Satellite System (GNSS), have been
key determinants of the feasibility of UAV systems. By fusing
information from an Inertial Measurement Unit (IMU) with that
from GNSS, a 6DoF vehicle state can be reconstructed, which
is a crucial step for guidance and flight control [1,2].

In many robotics applications however, the vehicle needs to
perform a task within environments where GNSS information
may not be available, such as indoors, in forests, underground,
or other such locations where GNSS is naturally denied. In such
cases, autonomous localisation is required.
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Autonomous localisation is a process of determining the
platform’s position without the use of any a priori information
external to the platform except for what the platform senses
about its environment; that is, the determination of the
platform’s position and attitude without the use of predefined
maps or any purpose-built infrastructure. This is also known
as Simultaneous Localisation and Mapping (SLAM), as
introduced by [3], where the vehicle has a capability for online
map building, while simultaneously utilising the generated
map to estimate and correct errors in the navigation solution
obtained.

There have been significant advances in SLAM research
over recent years in terms of its real-time deployment and
implementation on land, and in underwater applications. Most
efforts have concentrated around reducing the computational
complexity of SLAM. For example, large-scale maps are
partitioned into small amenable maps [4,5] and [6] introduced
the hierarchical sub-map method. The sparse nature of the
SLAM information filter has also been extensively investigated
and implemented [7]. In parallel to these efforts, there have
been attempts to develop SLAM for 3D environments, for
example: the use of rotating laser range finders in mining
applications [8], and the use of stereo vision systems for low-
dynamic aerial vehicles [9]. However, in these applications,
the 3D implementation is limited to the use of low-dynamic
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Fig. 1. (a) The direct 6DoF SLAM structure, which estimates the vehicle position, velocity and attitude along with observed feature locations, and (b) the indirect
6DoF SLAM structure, which uses the error state of the INS and map model, and estimates the errors in the vehicle states and map.

vehicles, due to the extensive processing needed for 3D
mapping.

For airborne applications, to the best of our knowledge
there have been only three attempts up to now: SLAM on a
blimp-type (thus low-dynamic) platform using a stereo vision
system [9]; inertial SLAM in a laboratory environment [10];
and SLAM on a fixed-wing UAV with inertial sensors and a
single vision system by the present authors [11].

In this paper, we will provide a real-time implementation
of airborne SLAM as an extension of our previous work.
The challenge in airborne deployment of SLAM lies in the
complexity of the dead-reckoning process involved and its
fast-drifting error. If we look at how the localisation system
for an airborne vehicle has been formulated in the past, the
core sensing device has been an IMU. This unit measures
the acceleration and rotation rate of a platform with high
update rates, which can then be transformed and processed to
provide its position, velocity and attitude, resulting in an Inertial
Navigation System (INS) [12,13]. The data presented by the
INS are fed to the guidance and control system to achieve
further autonomy. Inertial navigation is significant in that it
only measures dynamical quantity, and is thus independent
of platform kinematics. The navigational solution provided
by INS, however, drifts with time, as in most other dead-
reckoning systems. However, the drift rate of the inertial
position is typically a cubic function of time, which makes the
development of any inertially based SLAM a challenge. Even
small errors in gyros will be accumulated in angle estimates
(roll and pitch), which in turn misrepresent gravitational
acceleration as the vehicle acceleration, thus resulting in
quadratic velocity (and cubic position) errors. Therefore, the
INS requires reliable and effective supplementary information
to constrain these errors. In this paper, we will provide results
from a real-time airborne SLAM based on an Extended Kalman
Filter (EKF), which fuses information obtained from a vision
system with the information from the INS.

In Section 2, we will present our airborne SLAM algorithm
based on two different approaches, direct and indirect, and
discuss the benefits of both. Sections 3 and 4 will provide
details of the real-time SLAM implementation and flight test
results. Section 5 provides a conclusion, with directions for
future work.

2. Airborne SLAM formulation

SLAM has been formulated directly for nonlinear dynamic
and observation models, using an EKF. In inertial navigation
applications however, SLAM can also be formulated indirectly
for linearised error dynamic/observation models, using a linear
Kalman Filter (KF). This indirect formulation has several
benefits over the direct formulation. Fig. 1 compares these
two SLAM structures. In both cases, an IMU provides
the acceleration and angular velocity of the vehicle. The
observation sensor provides the range, bearing and elevation
of observed features. In direct form, the filter accepts raw data
from the IMU and passes this into a nonlinear 6DoF model,
and the EKF proceeds through the process of predicting and
updating the states of the vehicle and feature locations.

In an indirect implementation however, the inertial loop is
separated from the filter; thus, the inertial navigation equations
transform the raw inertial data to position, velocity and attitude
measurements outside of the filter with sufficiently high rates.
The state dynamic model in KF is an error model of both the
vehicle and the observed features. When an observation occurs,
a predicted observation is also generated, which is based on the
current location of the vehicle and location of the feature as
indicated by the map. The difference between the predicted and
actual observations is passed to the KF as an observed error.
The KF uses this to estimate the inertial and feature errors. The
estimated errors from the filter are then fed back to the INS and
map to make further corrections.

Although the heart of the SLAM algorithm is exactly
the same, the main benefits of this indirect structure can be
summarised as follows [14]:

• The system becomes more tractable for real-time processing.
The main INS loop can provide continuous navigation data
within fixed time intervals. The SLAM update cycle, whose
computation time increases with map size, will not disrupt
the main INS loop, and time propagation algorithms can be
used to match information at appropriate times.

• The SLAM prediction cycle can exploit the low-dynamic
characteristics of INS errors. As a result, the rate of the
prediction cycle can be much lower than that of the direct
filter. The more accurate the IMU, the less frequently the
prediction cycle has to run.
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