
Robotics and Autonomous Systems 59 (2011) 519–529

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Sliding mode speed auto-regulation technique for robotic tracking
Fabricio Garelli a,∗, Luis Gracia b, Antonio Sala b, Pedro Albertos b

a CONICET and Universidad Nacional de La Plata, C.C.91 (1900), La Plata, Argentina
b Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

a r t i c l e i n f o

Article history:
Received 12 February 2010
Accepted 23 March 2011
Available online 13 April 2011

Keywords:
Robotic tracking
Sliding mode
Input saturation
Multivariable systems

a b s t r a c t

In advanced industry manufacturing involving robotic operations, the required tasks can be frequently
formulated in terms of a path or trajectory tracking. In this paper, an approach based on sliding mode
conditioning of a path parametrization is proposed to achieve the greatest tracking speed which is
compatible with the robot input constraints (joint speeds). Some distinctive features of the proposal
are that: (1) it is completely independent of the robot parameters, and it does not require a priori
knowledge of the desired path either, (2) it avoids on-line computations necessary for conventional
analyticalmethodologies, and (3) it can be easily added as a supervisory block to pre-existing path tracking
schemes. A sufficient condition (lower bound on desired tracking speed) for the sliding mode regulation
to be activated is derived, while a chattering amplitude estimation is obtained in terms of the sampling
period and a tunable first-order filter bandwidth. The algorithm is evaluated on the freely accessible 6R
robot model PUMA-560, for which a path passing through a wrist singularity is considered to show the
effectiveness of the proposal under hard tracking conditions.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Amajor issue in robotics is the tracking of reference trajectories.
In most practical applications that use industrial and/or mobile
robots [1,2] (e.g., machining, arc-welding, adhesive application,
spray painting, assembling, inspection, object transportation in
warehouses, surveillance in known environments, etc.), the robot
task is based on tracking a given pathwith negligible error andwith
the highest possible velocity, so that the cycle time of the robot
task is minimized. In this manner, both quality and productivity
indexes can be enlarged. However, both the accuracy and the speed
with which this tracking can be performed is strongly related
with the joint actuators physical limitations, which are seldom
considered in commercial robots to regulate the robot forward
motion. Instead, the tracking speed usually has to be computed a
priori by the robot operator in order to avoid an error message.

The reference path, i.e. the path to be followed, can usually
be expressed as a one-dimensional curve in the Cartesian space,
i.e., a time-dependent vector which can be parameterized in terms
of a scalar motion parameter whose first-order time derivative is
related to the path tracking speed by well-known expressions. In
this sense, the idea of a parameterized path has been successfully
used in several research works to adjust the tracking speed so

∗ Corresponding author.
E-mail addresses: fabricio@ing.unlp.edu.ar (F. Garelli), luigraca@isa.upv.es

(L. Gracia), asala@isa.upv.es (A. Sala), pedro@aii.upv.es (P. Albertos).

that the robot is able to track different types of references, even
those ones crossing robot kinematics singularities [3–6]. Among
the more significant works in this research line, a self-paced fuzzy
controller was designed in [7] to adjust the tracking speed of
two-dimensional paths in accordance with contour conditions
such as curvature. Similarly, a path parametrization satisfying
input and state constraints was obtained in [8] using look-ahead
optimization and a prediction of the evolution of the robot, for
which a priori knowledge of the desired path and a robot model
are required.More recently, a timewarp is considered in [9] to slow
down the task-space trajectory when joint limits are encountered.
In [10], instead, the power limits of the electricalmotors driving the
robot are considered to measure the maximum possible velocity
and force that can be physically generated by the robot to perform
the required task. Finally, path tracking is rigorously divided into
a geometric (desired error) and a dynamic (desired speed) task
in [11], where speed profiles are assigned for nonlinear systems
to track non-smooth paths.

This paper proposes a simple method which allows regulating
the robotic tracking speed in order to avoid path deviations
because of joint actuators constraints. In order to achieve this
goal, a sliding mode auxiliary loop is added to conventional
path tracking schemes, which is inspired on recent reference
conditioning algorithms developed to deal with constraints in
multivariable control systems [12,13]. It acts as a supervisory
block, since it is only activated when the desired speed would
lead the joint actuators to reach their limit values. Interestingly,
a practical consequence is the fact that, if a sufficiently high

0921-8890/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2011.03.007

http://dx.doi.org/10.1016/j.robot.2011.03.007
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
mailto:fabricio@ing.unlp.edu.ar
mailto:luigraca@isa.upv.es
mailto:asala@isa.upv.es
mailto:pedro@aii.upv.es
http://dx.doi.org/10.1016/j.robot.2011.03.007


520 F. Garelli et al. / Robotics and Autonomous Systems 59 (2011) 519–529

speed reference (motion parameter) is set, the method computes
the maximal tracking speed which is compatible with the joint
actuator limits. As an advantage over most of the above cited
proposals, the proposed technique is independent of the main
path tracking control algorithm and it does not require a priori
knowledge of the desired path. Since themethodwas thought to be
usedwith commercial industrial robots, speed joint constraints are
assumed (see Section 2). A well-known six-revolute (6R) robotic
arm is taken as case study, for which a path passing through a
robot singularity is considered. Themethod implementation can be
even carried out bymeans of analog electronics since the switching
device is confined to the low-power side of the system.

The article is organized as follows. In the next section the
classical kinematic control scheme for robotic path tracking is
recalled, and some common alternatives to deal with actuator
constraints are introduced. Section 3 presents some basic concepts
of variable structure theory and develops the sliding mode auto-
regulation technique for tracking speed in order to avoid path
errors due to actuator nonlinearities. In Section 4 simulation
results are presented using the free-access 6R robot model PUMA-
560, for which the main distinctive features of the method are
illustrated. Finally, some conclusions are given.

2. Classical control scheme for robotic path tracking

Due to the computational complexity of advanced control
algorithms developed in current robotics research [14,15], classical
control techniques are still widely used in industrial robot
applications. In most practical robot systems, the controller
consists of three nested control loops: an analog actuator
current controller, an analog velocity controller, and a typically
digital position controller. The great majority of industrial robot
manufacturers implement the inner control loops (i.e., the current
loop and the velocity loop) internally in the so-called joint
controllers and do not allow the robot operator to modify these
loops. Conversely, the outer-loop position controller is usually
open for the user and can be manipulated.

Let us nowdiscuss some common setups for robot path tracking
in the above described framework.

2.1. Kinematic control setups

Workspace-coordinates kinematic control. Let us denote as pref(t)
the position reference defining the desired path in some user-
chosen workspace coordinates (for instance, Cartesian position
and Euler-angle orientation of the end effector). As mentioned in
the introduction, the trajectory pref(t) can be usually expressed in
terms of a desired path function f(λ) whose argument is the so-
called motion parameter λ(t) as

pref = f(λ), (1)

and, therefore, the desired speed comes from:

ṗref =
∂f
∂λ

λ̇. (2)

A kinematic control block in a robot closes a loop using position
information in both joint coordinates, to be denoted as q, and
workspace coordinates p, as well as desired position and speed
information from the target trajectory.

The relationship between the q configuration and the end-
effector position/orientation p is highly nonlinear, generically
expressed as:

p = l(q), (3)

where the function l is called the kinematic function of the robot
model. The first-order kinematics results in:

ṗ =
∂l
∂q

q̇ = J(q)q̇, (4)

where J(q) is denoted as the Jacobian matrix or simply Jacobian of
the kinematic function.

Fig. 1 shows a common setup for the kinematic control block
in robot path tracking, consisting of a two-degree of freedom
(2-DOF) control structure which incorporates a correction based
on the position error ep = pref − p by means of the position loop
controller Cp plus a feedforward term depending on the first-order
time derivative of the position reference, i.e. ṗref.

Note that, in this scheme the error correction is performed in
the Cartesian space and then the inverse of the robot Jacobian J(q)
is used to obtain the joint velocity vector q̇. Indeed, for a non-
redundant manipulator (square Jacobian), the joint velocities q̇
producing a particular end-effector motion ṗ0 can be written as:

q̇ = J−1(q)ṗ0, (5)
and the kinematic control loop is in charge of determining the
desired value for ṗ0 as a function of current position (p) and current
target trajectory point (pref) and speed ṗref. Once ṗ0 is computed,
(5) is applied and sent to the actuators.

The Jacobian of a generic robotic arm can be easily obtained
with the vectorial approach described in [16]. It is well-known that
there are certain workspace limits and internal positions where J
is singular. This matter is later discussed in Section 4.
Joint-coordinates kinematic control. Another conventional approach
for kinematic control consists of performing the error correction
directly in the joint space [17]. This second approach requires to
compute the position inverse kinematics, i.e., q = l−1(p). In any
case, the proposed technique also applies for that or any other
kinematic control.

2.2. Dealing with actuator constraints

In order to account for input constraints, joint speed saturation
is from now on considered between the desired joint speeds q̇d of
Fig. 1 and the achievable ones, denoted as q̇ds.

Naturally, the maximum values of the robot control signals,
which are given by the power constraints of the actuators, limit
the path tracking speed. Basically, the following three approaches
can be found in practical applications in order to face with robot
actuators constraints:
(a) To use a (conservative) low tracking speed, so that the robot

control signals never exceed their maximum values.
(b) To also use a fixed tracking speed, but higher than the previous

one, in such a way that the robot control signals saturate at
least once during the tracking.

(c) To compute for each point on the path the maximum tracking
speed allowed by the limits of the control signals and to use
that value for the motion parameter speed.

The first approach is extremely conservative and thus a not
advisable solution. In effect, it gives rise to an excessively slow
path tracking, which indeed wastes the tracking capabilities of the
robotic system. The second approach,which is the classical one, has
as its main drawback that when the control signals are saturated
the robot losses the reference and even leaves the desired path,
which makes it inappropriate for high-accuracy applications. The
third option is the best choice among the three listed practical
approaches; however, it depends on the desired path and on the
robot Jacobian and, hence, it ismore involved computationally and,
furthermore, modeling errors might give a speed over the desired
limits.

In practical implementations of the second or third options, the
actuator limitations are typically faced in two different ways:



Download English Version:

https://daneshyari.com/en/article/413239

Download Persian Version:

https://daneshyari.com/article/413239

Daneshyari.com

https://daneshyari.com/en/article/413239
https://daneshyari.com/article/413239
https://daneshyari.com

