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ABSTRACT

The computational bottleneck in all information-based algorithms for simultaneous localization and
mapping (SLAM) is the recovery of the state mean and covariance. The mean is needed to evaluate
model Jacobians and the covariance is needed to generate data association hypotheses. In general,
recovering the state mean and covariance requires the inversion of a matrix with the size of the state,
which is computationally too expensive in time and memory for large problems. Exactly sparse state
representations, such as that of Pose SLAM, alleviate the cost of state recovery either in time or in memory,
but not in both. In this paper, we present an approach to state estimation that is linear both in execution
time and in memory footprint at loop closure, and constant otherwise. The method relies on a state
representation that combines the Kalman and the information-based approaches. The strategy is valid for
any SLAM system that maintains constraints between marginal states at different time slices. This includes
both Pose SLAM, the variant of SLAM where only the robot trajectory is estimated, and hierarchical

techniques in which submaps are registered with a network of relative geometric constraints.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Seminal solutions to the simultaneous localization and map-
ping (SLAM) problem relied on the extended Kalman filter (EKF)
to estimate the mean absolute position of landmarks and the
robot pose and their associated covariance matrix [1,2]. This has
quadratic memory and computational cost, limiting its use to small
areas.

Instead of using the mean and the covariance, Gaussian dis-
tributions can be parametrized in canonical form using the
information vector and the information matrix. In SLAM, the infor-
mation matrix turns out to be approximately sparse, i.e., the
matrix entries for distant landmarks are very small and the
matrix can be sparsified with a minimal information loss, trading
optimality for efficiency [3]. Efficiency without information loss
is possible when estimating the entire robot path along with the
map, an approach typically referred to as full SLAM [4-6]. Exact
sparsification is also possible if only a set of variables is maintained;
either by keeping a small set of active landmarks [7], by decoupling
the estimation problem maintaining the map only [8], or as it is
done in Pose SLAM, by maintaining only the pose history [9,10].
In Pose SLAM, landmarks are only used to obtain relative
measurements linking pairs of poses. When working with sensors
that are able to identify many landmarks per pose, Pose SLAM
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produces more compact maps than the other exactly sparse
approaches.

Due to their small memory footprint, sparse representations
enable SLAM solutions that scale nicely to very large maps. Off-
line information-based SLAM approaches [5,11,12] obtain the
maximum likelihood solution from the constraints encoded in the
information matrix. The optimization iteratively approximates the
mean solving a sequence of linear systems using the previously
estimated mean as a linearization point for the constraints. This
process assumes data association for granted, somehow limiting
its applicability. On-line information-based approaches rely either
on variants of the batch methods [6] or, more commonly, on
filtering [9,13] using the Extended Information Filter (EIF) as
the estimation tool of choice. These on-line systems not only
have to recover the mean to evaluate the Jacobians, but also
need to address the data association problem. Data association
might be tackled directly from sensor readings, without relying
on the filtered pose priors [14]. The process, however, is prone to
perceptual aliasing and it is often convenient to take advantage of
the state estimates to limit the search space. False positives can
be avoided performing prior-based data association tests that use
cross covariances between match candidates. Both, the mean and
the cross covariances, are not directly available from the estimates
of the information-based representations.

The EKF and the EIF applied to SLAM are different in nature.
While in the former the estimate includes all the necessary data for
linearization and data association, the latter is advantageous from
the point of view of memory footprint. In this paper, we propose
a combination of these two filters with the aim of getting the best
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of the two worlds: reduced memory complexity and easy access to
the mean and the relevant blocks of the covariance matrix.

The work presented in this paper improves the formalization
of the state estimation technique in [15], where we adopted
an extended information filter approach. Here, we abandon this
paradigm and propose a novel mixed Kalman-information filter.
Moreover, while the approach presented in [15] is limited to Pose
SLAM, here we exploit the properties of the new mixed Kalman-
information filter to generalize the approach to both the Pose
SLAM problem and to hierarchical SLAM. For the sake of clarity,
our presentation is sequential in order, first we introduce the new
approach in the context of Pose SLAM and we latter extend it to
hierarchical SLAM.

The paper is structured as follows. In Section 2, we formalize
the Pose SLAM problem and describe its solution via EKF and EIF. In
Section 3, we describe a combination of the two filters that allows
state estimation in linear time and space complexities. Section 4
describes a refinement of the presented approach that allows
updates in constant time during open loop traverse. This is relevant
for approaches that carefully select the loops to close in order to
avoid inconsistency as much as possible [13] or where previously
mapped areas are barely revisited [ 16]. In these contexts, the linear
time complexity of loop closure is amortized over long periods
yielding an almost constant time state update. Section 5 extends
the approach to hierarchical SLAM and Section 6 presents results
both with simulated data and with real data sets that validate the
presented approach. Concluding remarks are given in Section 7.

2. Pose SLAM formulation

In the on-line form of Pose SLAM, the objective is to estimate the
trajectory of the robot, X, = {xq, ..., X}, with x; the robot pose at
time i. The following applies for poses in SE(2) or in SE(3) and in
Section 6 we particularize the approach to the planar case. Using
a Bayesian recursion, the trajectory, X,, is updated given a set of
observations, z,, of the relative displacement between the current
robot pose and previous poses along the path

P(Xn[Xn—1, Zn) X P(Xn[Xn—1)P(Zn|Xn)-

The observations set z, can be split in two independent groups
z, = {u,,y,} where u, gives the displacement between the
current robot pose and the immediate previous one, and y, links
the current pose with any other pose but the previous one. With
this, the probabilistic model becomes

P(XnlXn—1,Zn) X p(Xp|Xp_1)p(Wy, Yn|Xpn)
o p(Xp [Xn—1)p (W X)) D(Yn|Xn)

X p(Xn|Xn—1, W) p(YnlXn). (1
The estimation problem in Eq. (1) corresponds to the SLAM
operations of augmenting the state, p(x,|X,_1, U,), and updating
the robot path using relative observations, p(y,|Xy).

Assuming Gaussian distributions, the probabilities in Eq. (1)
can be parametrized either in terms of their mean and covariance,
Xn ~ N (I, Xp), or in terms of the information vector and matrix,
Xp ~ N7y, Ap), withn, = Ap B, Ay = 7!, and in which the
estimation workhorses are the extended Kalman and information
filters, respectively.

Note that simultaneous observations are independent and,
thus, observations linking the same pair of poses can be fused
before using them to update the filter. In particular, we can assume
the set u, to include a single element, u,,.

2.1. EKF Pose SLAM state estimation

The observation u, ~ N (uy, X,) is used to augment the state
with a new pose. In Pose SLAM, the state transition model is given
by
Xn = f(xn—l; un)

~ f(l‘('n—lv Mu) +Fn (Xn—1 — n—1) + Wy (u; — )

with F, and W, the Jacobians of f with respect to x,_; and u,,
evaluated at 4,1 and .. The EKF augments the state as

o = [";j] : ()

Z1:n—2 1:n—-2 2:l:n—2 n—1 FT
Y = ’ ! n s 3
! [Fn 2:n—l,I:n—Z Fo Zp 101 FnT + Q ( )

withQ = WnEuW,T and where X,,_ ,_1 is used to denote the block
of X, corresponding to the (n — 1)th pose, and X 1. indicate
the blocks ranging from the first to the kth pose.

Each set of measures y, = {y;, ce, yﬁ} constrains the relative
position of the last pose to some other poses from the robot
trajectory forming loops. The measurement model for each of these
constraints is

y;1 = h(X,‘, Xn) + vy
~ h(wi, tn) +HXp — Ip) + vp,

where h gives the displacement from x; to x,, in the reference frame
of x;,and H is

H=[0...0H;0 ... 0H,], (4)

with H; and H, the Jacobians of h with respect to x; and x;, and
vp ~ N (0, X,) the measurement white noise.

The information from observation yﬁ, is merged into the filter
applying the following increments

Ap =K ¥y = hQui, i), (5)
AY = —KH X, (6)

to p, and X, respectively, where K is the Kalman gain,
K= X, H'" 7!, and S the innovation matrix, S =H X, H' + %,.

Measurements y; result from the data association process.
Instead of directly comparing the sensor readings for the current
pose with those for all poses along the trajectory, data association
is generally tested on a limited region of the trajectory. To identify
poses that are close enough to the current one so that the
corresponding sensor readings are likely to match (i.e., to produce
y; observations), we can estimate the relative displacement, d,
from the current robot pose, x;, to any other previous pose in the
trajectory, x;, as a Gaussian with parameters

ta = h(ui, pn), (7)

DI
4 = [H; Hy] [Zf% z;’;] [H; H,]", (8)
n

where X;, is the cross correlation between the ith and the current
poses. Only poses whose relative displacement, d, is likely to be
inside sensor range need to be considered for sensor registration.

Whereas the EKF estimation maintains all the data necessary for
linearization and for data association, its drawback is that storing
and updating the whole covariance matrix entails quadratic cost
both in memory and in execution time.

2.2. EIF Pose SLAM state estimation

In the EIF form of Pose SLAM [9], the state is augmented as

Nip—2
Ny = | -1 — FnTQ_] (f (n=1, pw) — Fn pin—1) |,
Q_l (f (n=1, ) — Fn pin—1)
Atn21n2 Atn—2n1 0
Av=| A1z Anina+F Q'R —F,Q'|. (9
0 —-Q'F, Q"
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