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Parametric POMDPs for planning in continuous state spaces
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Abstract

This work addresses the problem of decision-making under uncertainty for robot navigation. Since robot navigation is most naturally
represented in a continuous domain, the problem is cast as a continuous-state POMDP. Probability distributions over state space, or beliefs,
are represented in parametric form using low-dimensional vectors of sufficient statistics. The belief space, over which the value function must
be estimated, has dimensionality equal to the number of sufficient statistics. Compared to methods based on discretising the state space, this
work trades the loss of the belief space’s convexity for a reduction in its dimensionality and an efficient closed-form solution for belief updates.
Fitted value iteration is used to solve the POMDP. The approach is empirically compared to a discrete POMDP solution method on a simulated
continuous navigation problem. We show that, for a suitable environment and parametric form, the proposed method is capable of scaling to large
state-spaces.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A Markov decision process (MDP) models the repeated
interaction of an agent with a stochastic environment [1]. MDP-
based approaches to planning are well-studied and effective in
domains where perfect knowledge of the state of the world
is available. Unfortunately they are less effective in problems
where the state is uncertain, a condition which prevails in many
real-world problems.

When the state is unknown but some (uncertain) information
about the state is available through observations, the world
can be described by a partially observable Markov decision
process (POMDP) [2]. A POMDP model defines a probabilistic
representation of an agent’s world. Specifically, given an
initial state and action, it defines probability distributions over
possible resultant states and observations. Given a reward
function, an agent’s task is to select actions which maximise
its expected sum of (possibly discounted) future rewards.

The POMDP task is challenging because the agent must
consider both the history of all previous observations and

∗ Corresponding author.
E-mail addresses: a.brooks@cas.edu.au (A. Brooks),

a.makarenko@cas.edu.au (A. Makarenko), s.williams@cas.edu.au
(S. Williams), hugh@cas.edu.au (H. Durrant-Whyte).

actions, and the space of all possible future observations
and actions. The task is simplified by the fact that, given
knowledge of the POMDP model, the agent can maintain a
probability distribution over states which summarises the entire
history [3]. This distribution is usually referred to as the agent’s
belief. Maintaining a consistent belief allows the problem to
be converted from a POMDP over partially observable states
to an MDP over fully observable beliefs. Traditional MDP
solution methods can then be applied to the resultant belief-
state MDP [3,1].

A number of POMDP solution methods, including the
one proposed in this paper, solve the resultant MDP using
value iteration. Essentially, value iteration iteratively builds a
value function which specifies the expected sum of discounted
future rewards attainable from each belief-state. Given a value
function, an agent can act by simply choosing the action which
instantaneously maximises its value, which is equivalent to
planning ahead.

The problem of robot navigation is often cast as a POMDP,
on the grounds that localisation is inherently imperfect and
MDP-based approaches do not account for this uncertainty.
The POMDP solution explicitly models the robot’s position
uncertainty, making decisions based on the probabilistic
distribution over pose space. This naturally imparts the useful
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property that the robot will trade off actions that move the robot
towards its goal with actions that reduce the robot’s uncertainty
in a principled way.

The majority of value-based POMDP research for robot
navigation has focussed on the discrete case, dividing
configuration spaces into finite numbers of cells. Robot
navigation, however, is a fundamentally continuous problem
that is poorly represented in the discrete domain unless the
discretisation is sufficiently fine. Discrete POMDP solution
methods have problems with fine discretisations because the
dimensionality of the belief space is equal to the number of
states, and computational complexity increases rapidly with the
dimensionality of the belief space.

This paper presents an approach to solving robot-navigation
POMDP problems efficiently in continuous state spaces. We
refer to this approach as a parametric POMDP solution
method [4]. By constraining distributions over state space to a
parametric family, points in the infinite-dimensional continuous
belief space can be represented by finite vectors of sufficient
statistics. Choosing a parametric family with a relatively
small number of sufficient statistics results in a relatively
low-dimensional belief space. For a given combination of
MDP model and parametric form, it may be possible to
find a (possibly approximate) belief transition function which
preserves that parametric form. If so, belief updates can
be performed efficiently, directly in the low-dimensional
parameter-space. Since the value function is not likely to
be piecewise-linear and convex (PWLC) in sufficient-statistic
space, fitted value iteration [5] is used to solve the POMDP. For
reasons described in Section 3, we focus on the use of Gaussian
distributions as a parametric form.

The remainder of this paper is organised as follows.
Section 2 discusses related approaches, and Section 3
formulates the dynamic programming equations on which the
POMDP solution is founded and discusses the implications
of a parametric representation. Section 4 describes a solution
using this representation, Section 5 applies this solution to a
robot navigation problem and Section 6 concludes and provides
directions for future work.

2. Related work

This section provides a brief review of prior work on
POMDP solution methods. For a more thorough review, readers
are directed to [6] and the references therein.

2.1. Value-based solution methods

While this paper focusses on the continuous worlds found
in the robotics domain, a wealth of discrete value-based
solution methods can be applied by first discretising the world.
Discrete value-based POMDP solution methods can be broadly
categorised as either being gradient based or being based on
fitted value iteration.

2.1.1. Gradient-based solution methods
Gradient-based solution methods exploit the fact that, for

discrete state, observation and action spaces, the value function

is piecewise-linear and convex (PWLC). It can therefore be
represented by the supremum of a finite number of hyperplanes
over the belief simplex, where each hyperplane is represented
by an α-vector [7]. The major problem for gradient-based
methods is that the order of the number of α-vectors required to
represent the value function exactly is double-exponential in the
planning horizon [6]. Thus, algorithms for gradient-based value
iteration need to keep the number of α-vectors low while still
maintaining a good approximation of the true value function.

It is well-known that not all α-vectors contribute to the
supremum, and therefore do not affect the value function. A
number of algorithms perform exact value iteration by finding
the minimal set of α-vectors required at each step, either by
enumerating a superset of the required vectors and pruning the
useless ones [8–10] or by iteratively expanding a subset until all
vectors have been found [7,11,2]. For a more thorough review
of exact algorithms, the reader is directed to [12].

Unfortunately, strategies for finding the minimal set of
vectors to represent the value function exactly are usually
computationally expensive and seem to make a difference only
in the constant factors rather than the order of the growth [13].
As a result, exact algorithms are generally considered to be
intractable for all but trivial problems.

Rather than generating all α-vectors required to represent the
entire value function exactly, point-based algorithms perform
approximate value iteration by generating only those vectors
which maximise the value at a discrete set of belief points
B [14,13,15–17,6]. It is hoped that the gradient information
provided by the α-vectors will generalise well to other beliefs.
The Perseus algorithm uses this gradient information to further
reduce the required number of α-vectors [14]. At each iteration
it finds a subset of belief points in B which, when updated,
will improve the value at all B. As a recent discrete POMDP
algorithm with available code, Perseus is compared to the
algorithm proposed in this paper in Section 5.

Hoey et al. extend point-based value iteration to continuous
observation spaces, using the fact that observations are useful
only to the extent that they lead to different courses of
action [18]. The observation space can therefore be partitioned
by calculating the thresholds at which different observations
require different actions. It is unclear how appropriate this
is for robot navigation problems in which the action space
is fundamentally continuous, and ideally every observation
should lead to a different action.

2.1.2. Methods based on fitted value iteration
An alternative to gradient-based methods is to represent the

value explicitly only at a discrete set of belief points B, and use
a function approximator to represent the value between points.
These approaches are often known as grid-based methods,
however we find the term somewhat misleading because the
beliefs in B need not exhibit any regular structure. Since the
method proposed in this paper is based on fitted value iteration,
the mechanics are described in more detail in Section 4.

A challenge for fitted value iteration techniques is the design
of an efficient function approximator, since a discrete state
space gives rise to a high dimensional belief space in which
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