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Abstract

This paper addresses the problems of what to imitate and how to imitate in simple uni and bi-manual manipulatory tasks. To solve the what to
imitate issue, we use a probabilistic method, based on Hidden Markov Models (HMM), to extract the relative importance of reproducing either
the gesture or the specific hand path in a given task. This allows us to determine a metric of imitation performance. To solve the how to imitate
issue, we compute the trajectory that optimizes the metric given the constraints of the robot’s body. We validate the methods using a series of
experiments where a human demonstrator uses kinesthetics in order to teach a robot how to manipulate simple objects.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Recent advances in Robot Programming by Demonstration
RbD, also referred to as Learning by Imitation, have identified a
number of key issues that need to be solved in order to ensure a
generic approach to the transfer of skills between various agents
and situations [17,18]. These have been formulated into a set
of generic questions, namely what to imitate, how to imitate,
when to imitate, and who to imitate. These questions were
formulated in response to the large body of work on RbD that
emphasized ad hoc solutions to sequencing and decomposing
complex tasks into known sets of actions, performable by both
the demonstrator and the imitator, see e.g. [4,12,15,23,26,27].
In contrast to these other works, the above four questions and
their solutions aim at being generic, in that they make no
assumptions on the type of skills that can be transmitted. The
drawback of such a generic approach is that it has yet to show
how the methods will perform when scaled up from acquiring
basic skills to complex sequences.

In our previous work we have addressed the what to imitate
question by developing a general architecture to extract the
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relevant features of a given task. The method that we used relied
on computing the statistical variability of each element of the
task; see [9,6]. In this paper, we present an extension of this
work which attempts to address the “how to imitate” problem
in the control of uni-manual and bi-manual manipulation of
objects using a pair of robotic arms, each with four degrees of
freedom (DOF). This leads us to tackling more generic issues
of motor control, namely that of optimizing the arm controller,
given specific constraints. Specifically, we extend the pseudo-
inverse optimization method for solving the inverse kinematics,
so as to determine the optimal imitation strategy, i.e. the
strategy that best satisfies all the constraints of a given task.

The issue of “how to imitate”, also referred to as
the correspondence problem [17], was first addressed very
generically in a number of studies with simulated abstract
agents acting in a Markov world [1,5]. More recent work by [2,
14] also considered the application of such a system to the
control of a robotic arm with two degrees of freedom. The
solution to the correspondence problem in the latter works was,
however, constrained to a particular arm and did not provide a
general solution for robotic arms with an arbitrary number of
degrees of freedom. Moreover, in each case, the metric of the
task was preset. Here, we present a method that first discovers
the metric of the task and then extends the classical inverse
kinematics solution to solve generically the correspondence
problem for an arbitrary robotic arm.
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Next, we will illustrate the key issues at stake and briefly
present the approach that we took in solving them.

1.1. What to imitate and how to imitate

When learning a new task by imitation, the robot must
first determine the relevant features of the task to be imitated
(“what to imitate”) and, second, adapt its own motor program
to produce an optimal imitation (“how to imitate”). Figs. 1 and
2 illustrate these issues in a simple uni-manual task. Let us first
consider the problem of determining the relevant features of a
task along with their relative importance.
What to imitate

Consider a planar manipulator with two DOFs, performing
two demonstrations of a given task, each time starting with a
different joint configuration; see Fig. 1. If one was to record the
trajectories of the joints θ = {θ1, θ2} and of the end-effector
x = {x1, x2} of the manipulator, one would observe that the
first set of variables, i.e. the joint angles, varies significantly,
while the second set of variables remains fairly constant from
one demonstration to the next. Thus the information conveyed
by the hand path would appear to be more reliable than that
conveyed by the joints. In other words, the task would appear
to put stronger constraints on the hand path than on the joint
trajectories. Thus, in order to reproduce the task, one would
give more weight to reproducing the hand path than the joint
trajectories.

In order to give a measure of the how correctly the action was
reproduced, one needs a measure of imitation performance, i.e.
a cost function. This cost function must explicitly encapsulate
the task constraints, as well as give a measure (metric) of their
relative importance.

Let us define H1(θ , θ ′) and H2(x, x′) as measures of the
discrepancy between demonstrated and reproduced trajectories
of the joints (θ , θ ′) and hand path (x, x′), respectively, then,
without loss of generality, we can define a global measure of the
imitation performance by the weighted sum H(θ , θ ′, x, x′) =

w1 H1(θ , θ ′) + w2 H2(x, x′). The weights w1 and w2 give a
measure of the relative importance of each signal. In the
previous example, we would set w1 < w2 to give more
importance to following the path of the end-effector than to
reproducing the joint trajectories.
How to imitate

Once we have measured the relative importance of each task
feature and have incorporated it into the cost function H , we
must determine a trajectory for the joints and end-effector of the
imitator’s arm that is optimal with respect to the cost function.
We note that the problem may not be as straightforward as
it seems, since the demonstrator and the imitator may differ
significantly in their embodiment (arm length, and number of
degrees of freedom for each arm). This is typically the case
when transferring information from a human to a robot, even
when the robot has a humanoid shape (as is the case in our
experiments). This idea is illustrated in Fig. 2, where the two
segments of the imitator’s manipulator differ in length from
those of the demonstrator. If the imitator’s arm was allowed
to directly replay the joint trajectories of the demonstrator’s

Fig. 1. Illustrative schema of the what-to-imitate issue. A two DOF
manipulator arm produces two demonstrations of a given task, namely drawing
an S figure, and starting with different joint configurations. The path of the
end effector given by x = {x1, x2} is invariant, while the joint trajectories
θ = {θ1, θ2} vary significantly.

Fig. 2. Illustrative schema of the how-to-imitate issue. The manipulator of the
imitator generates different alternatives to reproducing the task demonstrated in
Fig. 1, from purely satisfying the joint trajectories (left) to satisfying only the
hand path (right).

arm, then we would end up with a very different path for the
end-effector than the one demonstrated. Conversely, replaying
the hand path would result in major differences in the joint
trajectories. Fig. 2 illustrates the effect of generating different
alternatives, from purely satisfying the joint trajectories (left) to
satisfying only the hand path (right).

Minimizing the cost function determines a trade-off between
accurately reproducing either the hand path or the joint
trajectories. Note that the cost function may have several
minima; in other words, there may be several solutions to
the problem. we note also that the hand path and the joint
trajectories are not independent variables, but are related to each
other through a forward and inverse kinematics function, which
is what we will discuss next.

1.2. The inverse kinematics problem

In classical control theory, inverse kinematics usually refers
to the inverse computation required to determine the position
of each of the robot’s joints for a given location of the robot’s
end-effector (usually its arm). If we define the coordinates
of a manipulator as the n-dimensional vector of joint angles
Eθ and the position of the m-dimensional vector Ex , then the
forward kinematics are given by: Ex = f (Eθ), while the inverse
kinematics are given by

Eθ = f −1(Ex) (1)

where f is a continuous function ∈ R.
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