Robotics and Autonomous Systems 58 (2010) 1306-1315

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Simultaneous learning of perception and action in mobile robots

Pablo Quintia?, Roberto Iglesias**, Miguel A. Rodriguez?, Carlos V. Regueiro®

2 Department of Electronics and Computer Science, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela, Spain
b Department of Electronics and Systems, Universidade da Corufia, Fac. Informdtica, Campus del Elvifia, A Corufia, Spain

ARTICLE INFO ABSTRACT

Article history:
Available online 21 September 2010

One of the main problems of robots is the lack of adaptability and the need for adjustment every time
the robot changes its working place. To solve this, we propose a learning approach for mobile robots
using a reinforcement-based strategy and a dynamic sensor-state mapping. This strategy, practically
parameterless, minimises the adjustments needed when the robot operates in a different environment
or performs a different task.

Our system will simultaneously learn the state space and the action to execute on each state. The
learning algorithm will attempt to maximise the time before a robot failure in order to obtain a control
policy suited to the desired behaviour, thus providing a more interpretable learning process. The state
representation will be created dynamically, starting with an empty state space and adding new states as
the robot finds new situations that has not seen before. A dynamic creation of the state representation
will avoid the classic, error-prone and cyclic process of designing and testing an ad hoc representation. We
performed an exhaustive study of our approach, comparing it with other classic strategies. Unexpectedly,
learning both perception and action does not increase the learning time.

Keywords:
Reinforcement learning
State representation
Fuzzy ART

Robot learning

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

One of the key objectives in modern robotics is to have robots
integrated into common life, take them out of the laboratories
and put them to work in real environments while interacting
with people. In order to have productive, safe and robust working
robots, we need them to be able to cope with the dynamic nature of
real environments: like humans or animals, robots should be able
to adapt and learn from their own experiences instead of relying
on predefined rules, models or hardwire controllers. The behaviour
of a mobile robot is the result of the properties of the robot itself
(physical aspects), the environment, and the control program the
robot is executing. The same robot, running the same control
programs, might act differently, simply because the wall covering
has changed; hence, the performance and reliability of a robot
controller operating continuously cannot be guaranteed, showing
that adaptability is the main characteristic robots should possess.
Traditional robot control code represents sensor-action couplings
asrigid, usually pre-defined mappings that lack robustness in cases
where novel situations occur, or where the robot control code does
not cover the particular situation the robot is encountering.

This paper presents a system aimed at permitting robots to si-
multaneously learn how to perceive and how to act from their

* Corresponding author.
E-mail addresses: pablo.quintia@usc.es (P. Quintia),
roberto.iglesias.rodriguez@usc.es (R. Iglesias).

0921-8890/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2010.08.009

interaction with the environment (Fig. 1). The system we propose
consists of two modules: one responsible for the perception, and
the other for the action. The robot will cluster robot sensor read-
ings into a finite number of distinguishable situations. We shall
call these distinguishable situations states. Therefore, the percep-
tion learning module in Fig. 1 will achieve a sensor-state mapping
that will dynamically increase to include new situations, detected
in the stream of sensor inputs, and that have not been seen be-
fore. This dynamic sensor-state mapping will be combined with a
learning strategy (action learning in Fig. 1) capable of adapting the
robot’s behaviour to those relevant situations (states) that are be-
ing identified by the perception module.

We already tried to achieve this same goal in the past [1]: nev-
ertheless, we ended up with a system which, although promising,
involved too many parameters and slow learning. We then investi-
gated alternatives to speed up reinforcement learning [2,3], so that
now we can propose an innovative alternative where the number
of parameters is reduced to the bare minimum, and the learning
times are very short.

2. Action learning

One way of getting a robot to learn from its interaction with
the environment is through reinforcement: according to psychol-
ogy theories, learning is strengthened if it is followed by posi-
tive reinforcement—pleasure—and weakened if it is followed by
punishment—pain [4]. This is something that is clearly described

http://dx.doi.org/10.1016/j.robot.2010.08.009
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
mailto:pablo.quintia@usc.es
mailto:roberto.iglesias.rodriguez@usc.es
http://dx.doi.org/10.1016/j.robot.2010.08.009

P. Quintia et al. / Robotics and Autonomous Systems 58 (2010) 1306-1315 1307

i SOM
Perception ART

perception
learning va

action state

y

Action {Q-\earnmg

| " Eligibility traces
earning Genetic algorithm

reinforcemen

Fig. 1. General schema of our proposal.

in Thorndike’s Law of Effect [5]: actions followed by good or bad
outcomes have their tendency to be reselected altered accordingly.
Modern reinforcement learning grew inspired by these psycholog-
ical theories (trial and error learning), together with optimal con-
trol theory and its solution using value functions [6-8], and the
development of temporal difference methods [9-12]. Reinforce-
ment learning is a machine learning paradigm that determines
how an agent ought to take actions in an environment so as to max-
imise some notion of long-term reward:

o0
E [Z J/tn] (1
t=0
r¢ is the reinforcement received at time ¢, and y € [0, 1] is a
discount factor which adjusts the relative significance of long-term
rewards versus short-term ones.

Therefore, when reinforcement learning is applied in robotics,
all a robot needs is a reinforcement function which tells the robot
how well or how poorly it has performed, but nothing about the
set of actions it should have carried out. Through a stochastic ex-
ploration of the environment, the robot must find a control pol-
icy which maximises the expected total reinforcement described
above (Eq. (1)).

Reinforcement learning is learning what to do, i.e. how to map
situations to actions. In general, reinforcement learning algorithms
attempt to improve the agent’s decision-making policy over time.
Formally, a policy is a mapping from relevant and distinguishable
states to actions. Any of the most common reinforcement learning
algorithms can be used in the system we propose (Fig. 1); hence, we
include a brief description of some of them in this paper and we test
them in the experimental application of our system (experimental
results described in Section 5). Nevertheless, since we wish to
minimise the number of parameters that need to be determined
by the user, we shall propose our own algorithm (increasing time
before failure). This algorithm will be described later in this paper
(Section 2.3).

2.1. Q-learning

Q-learning [12] is one of the most popular reinforcement
learning algorithms, through which the robot will learn a utility
function of states and actions, termed Q-function. This function
estimates the expected discounted reward for every state-action
pair, i.e. Q (s, a) is the expected sum of future rewards obtained by
taking action a in state s and following an optimal policy thereafter,

Q(s.a) =E [r(s, @)+ Y y'nilso =s. a0 = a] (2)

t=1

where r(s, a) is the reinforcement the robot receives when it
executes action a in state s, and E [} o2, y'relso =, ap = q]
represents the expected total reinforcement the robot will receive
starting from the state s, by the executing action a, and then
following the best possible policy.

Once these Q-values have been learnt, the optimal action for
any state is the one with the highest Q-value; this is called the
greedy policy.

During the learning process, the system updates the estimation
of how good or bad the execution of action a; in the state s; seems
to be:

AQ(st, ar) = (e +y I'l'laaX Q(St4+1, @) — Q(st, ar)), (3)

where B, € [0, 1] is a learning rate. Eq. (3) describes what is
called the temporal difference error (TD-error), i.e., the difference
between the expected consequences of executing a; in s; and what
is really observed. This is also the simplest version of Q-learning,
as it only updates Q-values based on the transition between two
consecutive states. Hence, this algorithm is considered as one of the
1-step temporal difference methods [13,14]. Nevertheless, when
rewards occur infrequently, it can take many learning trials for
these values to propagate to previous states. Accordingly, multi-
step TD-learning [13] attempts to expedite this process by simply
providing the system with additional memory. One of the most
common and well-known multi-step TD methods consists in the
use of eligibility traces [15].

2.2. Q-learning improved with eligibility traces

An eligibility trace [15] is a temporary record of the occurrence
of an event, such as the visiting of a state or the performance of
an action. An eligibility trace is a variable associated with each
pair (state, action). The eligibility trace for the state s, action g, at
time t is denoted as e;(s, a) € R*. This value represents the time
elapsed since the last time the robot visited state s and performed
action a. Eligibility traces are a basic mechanism for temporal credit
assignment: when a TD error occurs (Eq. (3)), only the eligible
states or actions are assigned credit or blame for the error.

Three different methods have been proposed for combining
eligibility traces and Q-learning: Watkins Q (), Naive Q (A1), and
Peng Q (1) [12,13]. We have considered the use of the first two of
the aforementioned methods since they are the most commonly
used.

In Watkins Q(A), the Q-values corresponding to the states
that have been visited by the robot not long before (eligible
states) will be updated according to the current TD-error (Eq. (3)).
Nevertheless, this backpropagation of the consequences of the
execution of a; in s; will not take place if the robot performs an
exploratory action, i.e., the robot performs an action a; whose
Q-value is not the maximum one for the current state, s;. Owing to
this, the trace update is carried out in two stages: first, the traces for
all state—action pairs are either decayed by y X or, if an exploratory
action was taken, set to 0. Second, the trace corresponding to the

current state and action is incremented by 1.
yre_1(s,a)+1 ifs=s;anda = a;

and a, = arg_max(Q (s;, a))

a
e(s,a) =140 ifs=s;anda = a, (4)
and a; # arg_max(Q (s, a))
a
yAre_1(s, a) otherwise

A € [0, 1] is the trace-decay parameter. This trace will be used to
backpropagate the TD error:

Q(st, ar) = Q(s¢, ar) + Bidec(s, a), (5)
where
§=r+y maxQ(se+1, @) — Qse,).

Naive Q (1) is like Watkins Q (1), except for the fact that the
traces are not set to zero on exploratory actions:

er(s,a) = {xz:g g; +1 o

The update equation of the Q-values is the same as for
Watkins Q (1) (Eq. (5)). It is important to notice the number of pa-
rameters that are present in both learning algorithms: y, A, and ;.

ifs=s;anda = a;
otherwise.

Download English Version:

https://daneshyari.com/en/article/413292

Download Persian Version:

https://daneshyari.com/article/413292

Daneshyari.com

https://daneshyari.com/en/article/413292
https://daneshyari.com/article/413292
https://daneshyari.com

