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Scalable robot fault detection and identification
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Abstract

Experience has shown that even carefully designed and tested robots may encounter anomalous situations. It is therefore important for robots
to monitor their state so that anomalous situations may be detected in a timely manner. Robot fault diagnosis typically requires tracking a very
large number of possible faults in complex non-linear dynamic systems with noisy sensors. Traditional methods either ignore the uncertainty or
use linear approximations of non-linear system dynamics. Such approximations are often unrealistic, and as a result faults either go undetected or
become confused with non-fault conditions.

Probability theory provides a natural representation for uncertainty, but an exact Bayesian solution for the diagnosis problem is intractable.
Monte Carlo approximations have demonstrated considerable success in application domains such as computer vision and robot localization and
mapping. But, classical Monte Carlo methods, such as particle filters, can suffer from substantial computational complexity. This is particularly
true with the presence of rare, yet important events, such as many system faults.

This paper presents an algorithm that provides an approach for computationally tractable fault diagnosis. Taking advantage of structure in the
domain it dynamically concentrates computation in the regions of state space that are currently most relevant without losing track of less likely
states. Experiments with a dynamic simulation of a six-wheel rocker-bogie rover show a significant improvement in performance over the classical
approach.
c© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper a fault is defined as a deviation from expected
behavior. Experience has shown that even carefully designed
and tested robots may encounter faults [6]. One of the reasons
for this is that components degrade over time. Another is that
the developers of the robot rarely have complete knowledge of
the environment in which it operates and hence may not have
accounted for certain situations.

Fault Detection and Identification (FDI) for robots is a
complex problem. This is because the space of possible faults
is very large, robot sensors, actuators, and environment models
are uncertain, and there is limited computation time and power.

The algorithm presented in this paper uses Monte Carlo
methods to gain accuracy. Classical Monte Carlo methods for
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dynamic systems, such as particle filters, are capable of tracking
complex non-linear systems with noisy measurements. The
problem is that estimates from a particle filter tend to have a
high variance for small sample sets. Using large sample sets is
computationally expensive and defeats the purpose.

This paper presents an approach for improving the accuracy
of fault monitoring with a computationally tractable set of
samples in a particle filter. The combination of two algorithms
described in this paper enables monitoring of a wider range and
larger number of faults during robot operation than has hitherto
been possible. It can handle noisy sensors, non-linear, non-
Gaussian models of behavior, and is computationally efficient.

2. Robot fault detection, identification, and monitoring

A fault is defined as a deviation from the expected behavior
of the system. A failure is a complete interruption of the
system’s ability to perform the required operation [12]. Fault
detection is defined as the process of determining that a fault
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has occurred. Fault identification is the process of determining
exactly which exception or fault occurred. Fault detection
and identification are typically passive, i.e., they do not alter
control actions. Fault monitoring is the process of providing
a distribution over fault and operational states when there is
uncertainty in the domain. The approach presented in this paper
performs fault monitoring.

The faults addressed here include mechanical component
failures, such as broken motors and gears; faults due to
environmental interactions, such as a wheel stuck against a
rock; and sensor failures, such as broken encoders.

2.1. Motivation

In a number of application domains robots are required to
operate without human intervention. It is essential for these
robots to monitor their behavior so that faults may be addressed
before they result in catastrophic failures. An example of this
is the Dante II robot [4]. In 1994, Dante II was deployed
in a remote Alaskan volcano to demonstrate remote robotic
exploration. While ascending out of the crater, it encountered
steep slope and cross-slope conditions that changed the system
dynamics. Failure to identify this resulted in the robot falling on
its side. Dante II was unable to self-right and had to be rescued
by helicopter.

Another example is the Mars Polar Lander. It is hypothesized
that a sensor spike made it turn off its landing thrusters before
had actually landed. Since the engine turned off too soon, the
spacecraft fell to the surface at about 50 miles per hour, and
crash-landed [17].

A recent example is from the Mars Exploration Rover,
Spirit. There is a lubricant leak in one of the wheels on
Spirit. This fault was detected by the large team of engineers
who painstakingly analyze rover telemetry every night. A
fully autonomous rover would be required to detect this fault
autonomously. The detection of this fault has allowed the team
to modify the control algorithm and continue operation with
five wheels.

Not only are robots venturing into areas inaccessible or
dangerous for humans, but they are also increasingly becoming
a part of day to day life. It is also important for these robots
to detect faults in a timely manner, since failure to do so may
result in expensive consequences, both monetary and in terms
of consumer trust that may be hard to regain. If faults go
undetected, autonomous robots in real-world environments may
behave in an unpredictable or dangerous manner. On the other
hand, detecting and recovering from faults can considerably
improve the performance of the robots [5]. To maximize
successful operation the emphasis needs to be on designing to
minimize faults as much as possible, and to include algorithms
to detect and recover from faults when they do occur. The focus
of this paper is on the fault detection aspect of the problem.

2.2. Challenges

Identifying certain faults requires context sensitive interpre-
tation of sensor data that can be obtained only by monitoring

the dynamics of the system over time, which tend to differ ac-
cording to operating conditions. For example, for a rover, an
increase in the power required for locomotion on flat ground
may be a cause for concern, but a similar increase on a slope
might be perfectly acceptable. Sensors do not directly report
these dynamics because they are noisy and limited, i.e., they
do not have complete information about the state of the rover
and the environment that it is operating in. Control actions do
not provide complete information about state transitions either,
since faults and environmental interactions induce involuntary
transitions. In addition, there are a large number of components
that can fail in various combinations at any instant in time and
the computational resources are too limited to consider all pos-
sible combinations.

3. Classical particle filter for monitoring faults

Our formulation of the fault monitoring problem requires
estimating the robot and environmental state, as it changes
over time, from a sequence of sensor measurements that
provide noisy, partial information about the state. The
Bayesian approach to dynamic state estimation addresses this
problem. Computing the exact Bayesian posterior analytically
is intractable for the fault monitoring problem. Hence, we
use a particle filter approximation in this paper. Particle
filters are a Monte Carlo approximation method for dynamic
state estimation. Particle filters have been extensively used
for Bayesian state estimation in non-linear systems with
noisy measurements [11,9,8]. They approximate the probability
distribution with a set of samples or particles.

State estimation is the process of determining the state of a
system from a sequence of data. Fault monitoring has a natural
interpretation as a state estimation problem. Possible fault and
operational modes of the systems are represented as explicit
states. The sequence of measurements is then used to determine
the state of the system.

The multivariate state at time t is denoted as st and
measurements or observations as zt . We use the discrete time,
first-order Markov formulation of the dynamic state estimation
problem, hence the state at time t is a sufficient statistic for the
history of measurements. That is, p(st | s0...t−1) = p(st | st−1)

and the observations depend only on the current state, i.e.,
p(zt | s0...t ) = p(zt | st ). The posterior distribution at time
t , p(s1...t | z1...t ), includes all the available information up to
time t and provides the optimal solution to the state estimation
problem. We are interested in the filtering distribution, p(st |

z1:t ), which is a marginal of this distribution. The recursive filter
is defined as follows:

p(st | z1...t )

= ηt p(zt | st )

∫
p(st | st−1) p(st−1 | z1...t−1) dst−1. (1)

This process is known as Bayesian filtering, optimal filtering,
or stochastic filtering and may be characterized by three
distributions: (1) a transition model p(st | st−1), (2) an
observation model p(zt | st ), and (3) an initial prior
distribution, π(s0).
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