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a b s t r a c t

This paper deals with the problem of localizing and tracking a moving speaker over the full range
around the mobile robot. The problem is solved by taking advantage of the phase shift between signals
received at spatially separated microphones. The proposed algorithm is based on estimating the time
difference of arrival by maximizing the weighted cross-correlation function in order to determine the
azimuth angle of the detected speaker. The cross-correlation is enhanced with an adaptive signal-to-
noise estimation algorithm to make the azimuth estimation more robust in noisy surroundings. A post-
processing technique is proposed in which each of these microphone-pair determined azimuths are
further combined into a mixture of von Mises distributions, thus producing a practical probabilistic
representation of the microphone array measurement. It is shown that this distribution is inherently
multimodal and that the system at hand is non-linear. Therefore, particle filtering is applied for discrete
representation of the distribution function. Furthermore, the two most common microphone array
geometries are analysed and exhaustive experiments were conducted in order to qualitatively and
quantitatively test the algorithm and compare the two geometries. Also, a voice activity detection
algorithm based on the before-mentioned signal-to-noise estimator was implemented and incorporated
into the existing speaker localization system. The results show that the algorithm can reliably and
accurately localize and track a moving speaker.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In biological lifeforms hearing, as one of the traditional five
senses, elegantly supplements other senses as being omnidirec-
tional, not limited by physical obstacles and the absence of light.
Inspired by these unique properties, researchers strive towards en-
dowing mobile robots with auditory systems to further enhance
human–robot interaction, not only by means of communication
but also, just as humans do, to make intelligent analysis of the
surrounding environment. By providing speaker location to other
mobile robot systems, like path planning, speech and speaker
recognition, such a system would be a step forward in developing
a fully functional human-aware mobile robot.

The auditory systemmust provide a robust and non-ambiguous
estimate of the speaker location, andmust beupdated frequently in
order to be useful in practical tracking applications. Furthermore,
the estimator must be computationally non-demanding and

∗ Corresponding author. Tel.: +385 1 6129 561; fax: +385 1 6129 809.
E-mail addresses: ivan.markovic@fer.hr (I. Marković), ivan.petrovic@fer.hr

(I. Petrović).
URLs: http://act.rasip.fer.hr/people-opis.php?id=199 (I. Marković),

http://act.rasip.fer.hr/people-opis.php?id=1 (I. Petrović).

possess a short processing latency to make it practical for real-
time systems. The afore-mentioned requirements and the fact of an
auditory system being placed on a mobile platform, thus having to
respond to constantly changing acoustic conditions, make speaker
localization and tracking a formidable problem.

Existing speaker localization strategies can be categorized
in four general groups. The first group of algorithms refer to
beamforming methods in which the array is steered to various
locations of interest and searches for the peak in the output
power [1–4]. The second group includes beamforming methods
based upon analysis of a spatiospectral correlation matrix derived
from the signals received at the microphones [5]. The third
group relies on computational simulations of the physiologically
known parts of the hearing system, e.g. binaural cue processing
[6–8]. The fourth group of localization strategies is based on
estimating the time difference of arrival (TDOA) of the speech
signals relative to pairs of spatially separated microphones and
then using that information to infer about the speaker location.
Estimation of the TDOA and speaker localization from TDOA
are two separate problems. The former is usually calculated by
maximizing the weighted cross-correlation function [9], while
the latter is commonly known as multilateration, i.e. hyperbolic
positioning, which is a problem of calculating the source location
by finding the intersection of at least two hyperbolae [10–13].
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In mobile robotics, due to small microphone array dimensions,
usually hyperbolae intersection is not calculated, only the angle
(azimuth and/or elevation) is estimated [14–18].

Even though the TDOA estimation based methods are outper-
formed to a certain degree by several more elaborate methods
[19–21], they still prove to be extremely effective due to their el-
egance and low computational costs. This paper proposes a new
speaker localization and tracking method based on TDOA estima-
tion, probabilisticmeasurementmodelling based on vonMises dis-
tribution, and particle filtering. Speaker localization and tracking
based on particle filtering was also used in [1,22–24], but the nov-
elty of this paper is the proposed measurement model used for
a posteriori inference about the speaker location. The benefits of
the proposed approach are that it solves the front–back ambigu-
ity, increases the robustness by using all the available measure-
ments, and localizes and tracks a speaker over the full range around
the mobile robot, while keeping low computational complexity of
TDOA estimation based algorithms.

The rest of the paper is organized as follows. Section 2 describes
the implemented azimuth estimation method and the voice
activity detector. Section 3 analyses Y and square microphone
array geometries, while Section 4 defines the framework for the
particle filtering algorithm, introduces the von Mises distribution,
the proposed measurement model, and describes in detail
the implemented algorithm. Section 5 presents the conducted
experiments. Finally, Section 6 concludes the paper and presents
future works.

2. TDOA estimation

The main idea behind TDOA-based locators is a two-step one.
Firstly, TDOA estimation of the speech signals relative to pairs
of spatially separated microphones is performed. Secondly, this
data is used to infer about speaker location. The TDOA estimation
algorithm for two microphones is described first.

2.1. Principle of TDOA

A windowed frame of L samples is considered. In order to
determine the delay 1τij in the signal captured by two different
microphones (i and j), it is necessary to define a coherencemeasure
which will yield an explicit global peak at the correct delay.
Cross-correlation is the most common choice, since we have at
two spatially separated microphones (in an ideal homogeneous,
dispersion-free and lossless scenario) two identical time-shifted
signals. Cross-correlation is defined by the following expression:

Rij(1τ) =

L−1−
n=0

xi[n]xj[n −1τ ], (1)

where xi and xj are the signals received by microphone i and j,
respectively. As stated earlier, Rij is maximal when the correlation
lag in samples,1τ , is equal to the delay between the two received
signals.

The most appealing property of the cross-correlation is
the ability to perform calculations in the frequency domain,
thus significantly lowering the computational intensity of the
algorithm. Since we are dealing with finite signal frames, we can
only estimate the cross-correlation:

R̂ij(1τ) =

L−1−
k=0

Xi(k)X∗

j (k)e
j2π k1τ

L , (2)

where Xi(k) and Xj(k) are the discrete Fourier transforms (DFTs)
of xi[n] and xj[n], and (.)∗ denotes complex-conjugate. We are
windowing the frames with rectangular windows and no overlap.

Therefore, before applying a Fourier transform to signals xi and xj,
it is necessary to zero-pad themwith at least L zeros, sincewewant
to calculate linear, and not circular convolution.

A major limitation of the cross-correlation given by (2) is
that the correlation between adjacent samples is high, which has
an effect of wide cross-correlation peaks. Therefore, appropriate
weighting should be used.

2.2. Spectral weighting

The problem of wide peaks in unweighted, i.e. generalized,
cross-correlation (GCC) can be solved by whitening the spectrum
of signals prior to computing the cross-correlation. The most
commonweighting function is the phase transform (PHAT) which,
as has been shown in [9], under certain assumptions yields a
maximum likelihood (ML) estimator. What the PHAT function
(ψPHAT = 1/|Xi(k)||X∗

j (k)|) does, is that it whitens the cross-
spectrum of signals xi and xj, thus giving a sharpened peak at the
true delay. In the frequency domain, GCC-PHAT is computed as:

R̂PHAT
ij (1τ) =

L−1−
k=0

Xi(k)X∗

j (k)

|Xi(k)||Xj(k)|
ej2π

k1τ
L . (3)

The main drawback of the GCC with PHAT weighting is that
it equally weights all frequency bins regardless of the signal-to-
noise ratio (SNR), thus making the system less robust to noise.
To overcome this issue, as proposed in [1], a modified weighting
function based on SNR is incorporated into the GCC framework.

Firstly, a gain function for such modification is introduced (this
is simply a Wiener gain):

Gn
i (k) =

ξ ni (k)
1 + ξ ni (k)

, (4)

where ξ ni (k) is the a priori SNR at the ithmicrophone, at time frame
n, for frequency bin k and ξ 0i = ξmin. The a priori SNR is defined as
ξ ni (k) = λni,x(k)/λ

n
i (k), where λni,x(k) and λ

n
i (k) are the speech and

noise variance, respectively. It is calculated by using the decision-
directed estimation approach proposed in [25]:

ξ ni (k) = αe[Gn−1
i (k)]2γ n−1

i (k)+ (1 − αe)max{γ n
i (k)− 1, 0}, (5)

where αe is the adaptation rate, γ n
i = |Xn

i (k)|
2/λni (k) is the a

posteriori SNR, and λ0i (k) = |X0
i (k)|

2.
In stationary noise environments, the noise variance of each

frequency bin is time invariant, i.e. λni (k) = λi(k) for all n. But
if the microphone array is placed on a mobile robot, most surely
due to the robot’s changing location, we will have to deal with
non-stationary noise environments. An algorithm used to estimate
λni (k) is based on minima controlled recursive averaging (MCRA)
developed in [26,27]. The noise spectrum is estimated by averaging
past spectral power values, using a smoothing parameter that is
adjusted by the speech presence probability. Speech absence in a
given frame of a frequency bin is determined by the ratio between
the local energy of the noisy signal and its minimum within a
specified time window. The smaller the ratio in a given spectrum,
the more probable the absence of speech is. Further improvement
can be made in (4) by using a different spectral gain function [28].

To make the TDOA estimation more robust to reverberation,
it is possible to modify the noise estimate λni (k) to include a
reverberation term λni,rev(k):

λni (k) → λni (k)+ λni,rev(k), (6)

where λni,rev is defined using a reverberation model with exponen-
tial decay [1]:

λni,rev(k) = αrevλ
n−1
i,rev(k)+ (1 − αrev)δ|Gn−1

i (k)Xn−1
i (k)|2, (7)
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