ELSEVIER

Available online at www.sciencedirect.com

sanNCE@DmEC'r@

Robotics and Autonomous Systems 54 (2006) 84-94

Robotics and
Autonomous
Systems

www.elsevier.com/locate/robot

Navigation with memory in a partially observable environment

A. Montesanto!, G. Tascini*, P. Puliti2, P. Baldassarri !

Dipartimento di Elettronica, Intelligenza Artificiale e Telecomunicazioni, Universita Politecnica delle Marche, Ancona, Italy

Received 25 February 2004; received in revised form 22 September 2005; accepted 28 September 2005
Auvailable online 22 November 2005

Abstract

The paper presents an architecture that allows the reactive visual navigation via an unsupervised reinforcement learning. This objective
is reached using Q-learning and a hierarchical approach to the developed architecture. Using these techniques requires a deviation from the
Partially Observable Markov Decision Processes (POMDP) and some innovations: heuristic techniques for generalizing the experience and for
treating the partial observability; a technique for the speed adjournment of the Q function; the definition of a special reinforcement policy
adequate for learning a complex task without supervision. The result is a satisfactory learning of the navigation assignment in a simulated

environment.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Hierarchical representation of POMDPs; Task hierarchy; Hierarchical reinforcement learning; Q-learning; Self-localization; Navigation

1. Introduction

The autonomous navigation of a mobile agent is actually the
object of a number of research work. The navigation ability
in the environment is strictly related to the quality of the
agent perceptions. These last depend on the quantity, quality
and reliability of sensors and actuators. The robotic navigation
based on visual servoing needs proper image processing
algorithms, for connecting actions to visual information.
Varela [19] asserts that sensorial processes and motor processes
evolve together, by undertaking respectively perceptions and
actions, that are considered as inseparable, ordered and aimed
to the whole cognitive system growing.

The agents, in the physical world, rarely have exact and
complete information on the environment state. It will be
necessary to select actions with partial uncertainty and often
the agents try actions aimed to grow the information and to
reach the target in a more efficient manner. The domains in
which the actions have probabilistic results and the agent has
direct access to the environment, may be formalised as Markov

* Corresponding author. Tel.: +39 071 2204830; fax: +39 071 2204 835.
E-mail addresses: a.montesanto@univpm.it (A. Montesanto),
tascinisas @tin.it (G. Tascini), p.puliti@deit.univpm.it (P. Puliti),
p.baldassarri@univpm.it (P. Baldassarri).
U Tel.: 439 071 2204 449.
2 Tel.; +39 071 2204900.

0921-8890/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2005.09.015

Decision Process (MDP) [8]. MDP play an important role in the
current Al research on planning [1,14,4,6], but the assumption
of full-observability constitutes a serious obstacle to their
application in the real world. Partially Observable Markov
Decision Processes (POMPD) generalize MDP structure to the
case in which the agent has to take a decision in a partial
uncertainty context.

In the real world the information of an agent about its
surroundings is necessarily incomplete: sensors are imperfect,
objects occlude one another’s view, the initial or the current
position of the robot may not be precisely known. The theory
of Partially Observable Markov Decision Processes (POMDP)
models this situation and provides a basis for computing
optimal behaviour. A POMDP is a Markov Decision Process
(MDP) [2] in which the agent is unable to observe the current
state. Instead it makes an observation based on the action
and the resulting state. The goal of the agent is to maximize
expected reward.

Of course if, as in our system, the memory concerns not only
the previous state, the Markovian nature, in a narrow sense, of
the process is altered.

Many algorithms are developed to solve the POMPD
problem but many techniques are too inefficient for being
general solutions. Using reinforcement learning techniques
appeared as a satisfactory policy for a POMPD with high state
number [9].


http://www.elsevier.com/locate/robot

A. Montesanto et al. / Robotics and Autonomous Systems 54 (2006) 84-94 85

Following the treatment of [4] a POMDP is a tuple
(S, A, T,R, O, 2) where S is a set of states, A a set of actions,
and {2 a set of observations. The functions 7" and R define a
MDP with which the agents interact without direct information
as to the current state. The transition function, 7 : S x A —
I1(S), specifies how the various actions affect the state of the
environment. I7(-) represents the set of discrete probability
distributions over a finite set. The notation T'[s, a, s'] represents
the probability that state s’ will result from taking action a in
state s.

The reward function R : § x A — R specifies the playoffs
of the agent. The playoff is a random function of the state and
action with R[s, a] representing the expected immediate reward
for taking action a from state s.

The function O : S x A — II({2) specifies the observation
model. That is O[s’, a, o] the probability of observing o in state
s’ after having taken action a.

The objective of the agent is to generate actions so as to
maximize its expected sum of reward. A reward receiving ¢
steps in the future is only worth ¥ as much as it would be if it
received them today. The variable y is a factor strictly between
0 and 1 that controls how much future rewards are worth.
The agent should choose actions to make the expected sum
of discounted future rewards E {Z?io yi R[s;, a,-]} as large as
possible.

In the particular framework in which is part of our work, i.e.
that one of a robotics navigation based on the visual servoing in
which is necessary a selflocalization without map and a limited
planning, it is worth saying to catch up a bordering zone to that
one the agent is in, without hitting the walls. The environment
taken into consideration is of the static type and office-like,
without landmarks. This environment involves a space of the
states which is very large. States indistinguishable between
them (perceptual aliasing) even if topologically distant exist and
they demand various actions (POMDP). Not having a map on
which to base the knowledge, for navigation a reactive approach
based on the reinforcement learning and using in particular the
Q-learning must be used. A variety of algorithms have been
developed in order to resolve the problem of the POMDP [11]
and techniques of reinforcement learning have demonstrated
a satisfactory politics for a POMDP with a high number of
states [9]. The use of the Q-learning involves a serious problem
for the time of learning. It is not simple to find an optimal
policy and such an approach is very slow in converging towards
optimal politics. In fact if it is indicated with Q*(s, a) the
value of the discounted reinforcement attended as a result for
an action a in the state s, and V*(s) like the value of s that
assumes the best action, and therefore is indicated V*(s) =
maxaQ*(s,a). The Q* (s function, a) can recursively be
written like:

Q*(s,a) = R(s,a)+y Y_T(s,a,s)max Q*(s', a’)

s'eS

in which optimal politics are defined also as: 7*(s) =
arg max, Q*(s, a). From the moment that the Q function lets
the action be explicit, the values of Q can be estimated on-line,
using them in order to define politics, since an action can be

chosen considering the maximum value of Q for the running
state. The principle of learning of the Q-learning is given by
the following equation:

Q(s,a) = O(s, a) + a(R(s, a) — y max 0(s',a") — Q(s, ).

If every action is executed in every state infinitely many
times on an infinite cycle and « is “discounted” in an
appropriate way, the values of Q will converge with a
probability range from 1 to Q*. When the values of Q are near
to converging to their optimal values, it is preferable that the
agent acts gradually considering in every situation the action
with higher Q value. Therefore, the Q-learning can converge
slowly enough to one optimal policy. A solution can be that
one to adopt the techniques of reinforcement learning based on
the model through the techniques of dynamics programming.
Therefore a model based on the last experience is used
iteratively in order to improve politics until the convergence
to optimal politicy. An example is supplied in the Dyna
architecture [18] in which a model of the environment is
constructed through the 7’ and R’ functions, that approximate
T and R, and stored the behaviour to hold through the Q
function. The T and R functions are respectively the function of
state transition and the function of the reinforcement. Every n-
pla of experience (s, to, r, s) is exploited in order to improve
the model and in order to improve the behaviour. To every
step the model is improved updating the statistics for the
state transitions and the reinforcement. Then the behaviour is
improved based on the updated 7’ and R’ functions, updating
the Q function k + 1 times:

Q(sj,aj) = R'(sj,a;) +y ZT’(sj,aj,s’) max o', a)
s’ ¢

with j from O to k and (50, a0) = (s, a), while the other
k couples are randomly chosen. This updating method is an
iterative version of the technique based on the model [11];
carrying out only k£ + 1 updating, the computing necessities
are limited. The choice of the action a’ to complete in the new
state s’ is carried out alternating the exploitation of the actual
O function to a different choice, being based on some strategy
of exploration.

Regarding the Q-learning, Dyna demands k times more
computing for every step, but the convergence can be also of
a faster order of magnitude. A defect of the Dyna architecture
is in the random choice of the k update of the Q function
that they are carrying out to every step: a better choice
can carry to a reduction of the computing and to a speed
of the learning. Two techniques that use this indication are
the prioritized sweeping [13], Queue-Dyna [15] and [3]. In
reinforcement learning the great spaces of state involve also
memory problems. As an example the Q-learning must store
in a table a number of Q values equal to the product of the
number of the states multiplied by the number of the actions.
Therefore in order to face the problem of the largeness of the
space of the states two different approaches can be adopted: the
techniques of generalizing and the hierarchical methods. In the
first, the agent must be able to transfer the acquired knowledge
through the experimentation of a couple (s, a), that it produces



Download English Version:

https://daneshyari.com/en/article/413346

Download Persian Version:

https://daneshyari.com/article/413346

Daneshyari.com


https://daneshyari.com/en/article/413346
https://daneshyari.com/article/413346
https://daneshyari.com

