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h i g h l i g h t s

• We developed an online deep dynamic neural model for intention classification.
• We evaluated the importance of internal action generation in motion classification and intention classification.
• Our proposed model performances better than a single layer supervised MTRNN.
• The possibility of each intention is able to be detected based on our model.
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a b s t r a c t

The understanding of human intent based on human motions remains a highly relevant and challenging
research topic. The relationship of the sequence of humanmotionsmay be a possible solution to recognize
human intention. The supervised multiple timescale recurrent neural network (supervised MTRNN)
model is a useful tool for motion classification. In this paper, we propose a new model to understand
human intention based onhumanmotions in real-time through a deep structure including two supervised
MTRNN models, which are based on understanding the meaning of a series of human motions. The 1st
supervised MTRNN layer classifies motion labels while the 2nd supervised MTRNN layer in the deep
dynamic neural structure identifies human intention using the results of the 1st supervised MTRNN. We
also considered the action–perception cycle effect between the 1st and the 2nd supervised MTRNNs,
in which the motion label perception and internal action (motion prediction) form a cycle to improve
the motion classification and intent recognition performance. A group of tasks was designed around
movements involving two objects in an attempt to detect different motions and intentions based on the
proposed deep dynamic neural model. The experimental results showed the deep supervised MTRNN
to be more robust and to outperform the single layer supervised MTRNN model for detecting human
intention. The action–perception cycle was found to efficiently improve both motion classification and
prediction, which is important for human intent recognition.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The recognition of human intent is a basic requirement for hu-
man–robot cooperation and interaction. If a robot is to understand
and even predict human intention, it may be capable of provid-
ing assistance in the form of humanized services more promptly.
For this purpose, various kinds of feature extraction methods are
needed to find sufficient characteristics for analyzing and under-
standing human intention.
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Generally, the vision-based feature extraction method has
proven to be an efficient method for the interaction between hu-
man andmachine [1]. Since advanced sensor systems such as Asus
Xtion [2] offer us a convenient way to capture human motion, we
are able to capture the human tester’s skeletal information and
record the position of each skeletal node in each frame. The se-
quential position of each skeletal node is used as initial input for
our model.

Since human intention is not a momentary behavior but a con-
tinuous process, time series data are usually used for intention
analysis [3,4]. The hidden Markov model (HMM) is considered to
be an efficient dynamic tool to model and classify sequences of
motions [5,6] and can also be used for intention recognition [7].
However, the HMM only considers the transitional probability of
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each state. It cannot represent the contextual meaning of differ-
ent motions and intentions. Further, it is difficult to measure the
transitional probability between two kinds of motion that may be
represented as variant time series data. The probability of two peo-
ple performing the same motion would be different.

The recurrent neural network (RNN) model proposed by
Husken and Stagge [8] showed another possible solution to
dynamic signal prediction and classification. As there are two kinds
of output neurons in this RNN model (prediction neurons and
classification neurons), it is able to predict the output and classify
the signals at the same time. Another RNN-basedmodel developed
by Yamashita and Tani [9], the multiple timescale recurrent neural
network (MTRNN), proved to be efficient to predict and generate
dynamic signals. The MTRNN model is developed based on a
continuous timescale recurrent neural network (CTRNN) [10].
An interesting aspect of MTRNN is that this model is able to
generate some untrained continuous signals based on existing
knowledge [11,12]. It has been proven that the MTRNN is capable
of efficiently predicting motion generation [13].

We considered the advantages of both models (MTRNN and
RNN with two output layers) and developed a supervised MTRNN
model that could be used for both motional classification and pre-
diction in our previous work. Similar to the model of Husken and
Stagge, both prediction and classification signals are generated si-
multaneously by the supervised MTRNN and can be used in a real-
time process. The performance of supervised MTRNN in terms of
motional classification has been proven to be efficient [14]. We
wish to emphasize that this model has the ability to classify a
lengthy untrained combination signal including several separately
trained signals. Thus, this model is able to detect an unknown
combination of motion signals if all elemental motion signals are
trained. After we obtain the motion labels by analyzing the data
sequence in each frame, we are able to get the intention labels by
checking the data series between successivemotions again. For this
purpose, we need another supervised MTRNN model to detect the
intention information based on the motion classification outputs.

An overview of our model is presented in Fig. 1. When amotion
is observed, the model in the first MTRNN layer should recognize
the performedmotion. The motion label which is the output of the
1st layer will be reused as input for the 2nd layer and the intention
label is obtained at the same time. Two different combinations of
motional sequences may lead to two different intent recognition
results even though some of their elemental motions are same. On
the other hand, different intentionsmay endwith the samemotion.
In this case, understanding the sequence of motions preceding the
final motion is essential to recognize complex human intention.

In this paper, we considered eight kinds of meaningful motions
and five kinds of human intentions. The motional classification
ability, as well as the intention recognition performance is also
evaluated. Moreover, the robustness of comparing our deep dy-
namic neural model with a single layer supervised MTRNN model
to recognize human intention is also demonstrated.

Related work is introduced in Section 2. The proposed deep
dynamic neural structure is introduced in Section 3. Section 4
presents the experimental results, which demonstrate that the
proposed deep supervised MTRNN is able to classify different in-
tentions as well as to distinguish between different human mo-
tions.

2. Related work

2.1. Encoding criteria for prediction and classification

We used Asus Xtion to extract skeletal nodes relating to human
motion and to record their x and y position sequences. The
normalization method was introduced in our previous work [14].

Fig. 1. Overview of motion-based human intent understanding.

The self-organizing map (SOM), which is commonly used as a pre-
processingmethod forMTRNN feature extraction [11,12,15], is also
used in our model. The input visual information is extracted using
the following formula:
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where vi is the reference vector of ith node; ∥vi,t − vteach,t∥
2 is the

activation power of the ith node in time scale t; V means thewhole
SOM space; σ is a constant which is set to 0.01 and yi,t is an output
vector which is used as the input for CTRNN.

The prediction output is calculated using the same SOM:

v̂i,t+1 =


i∈V

yi,tvi,t (2)

where v̂i,t+1 is the prediction output for the next step; yi,t is the
activation output of the ith node of the CTRNN fast context layer.

There are two kinds of activation functions:
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ui,t =


j
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where ui,t is the input of ith node in time step t; yj,t−1 is the state
value of the jth node in time step t − 1; wij is the weight from jth
node to ith node; C and O represent the classification nodes and
input–output nodes, respectively.

2.2. MTRNN

Context layers, which are the key components of MTRNN, are
modeled by CTRNN. In comparison with RNN, CTRNN additionally
considers the time scale effect. In a CTRNN, the output of each
neuron is calculated using both the current input samples and
the past history of the neural states. Hence, it makes the CTRNN
suitable for predicting continuous sensori-motor sequences [16].

The MTRNN consists of two kinds of CTRNN: a ‘‘fast context
layer’’ and a ‘‘slow context layer’’. The fast context layer, which
has a smaller time constant, is capable of modeling elementary
dynamic signals, and the slow context layer, which has a larger
time constant, is believed to control the information sequence of
the fast context layer and organize the overall signal sequence. The
input–output layer obtains the information after SOM clustering
and transmits it to the fast context layer. It can also pass the
activation output from the fast context layer to the SOM layer
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