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h i g h l i g h t s

• We stress the advantages of non-geometric (learned) VO as an alternative or an addition to standard geometric methods.
• Ego-motion is computed with state-of-the art regression techniques, namely Support Vector Machines (SVM) and Gaussian Processes (GP).
• To our knowledge this is the first time SVM have been applied to VO problem.
• We conduct extensive evaluation on three publicly available datasets, spanning both indoor and outdoor environments.
• The experiments show that non-geometric VO is a good alternative, or addition, to standard VO systems.
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a b s t r a c t

Visual Odometry (VO) is one of the fundamental building blocks of modern autonomous robot navigation
and mapping. While most state-of-the-art techniques use geometrical methods for camera ego-motion
estimation from optical flow vectors, in the last few years learning approaches have been proposed to
solve this problem. These approaches are emerging and there is still much to explore. This work follows
this track applying Kernel Machines to monocular visual ego-motion estimation. Unlike geometrical
methods, learning-based approaches tomonocular visual odometry allow issues like scale estimation and
camera calibration to be overcome, assuming the availability of training data.While some previous works
have proposed learning paradigms to VO, to our knowledge no extensive evaluation of applying kernel-
based methods to Visual Odometry has been conducted. To fill this gap, in this work we consider publicly
available datasets and perform several experiments in order to set a comparison baseline with traditional
techniques. Experimental results show good performances of learning algorithms and set them as a solid
alternative to the computationally intensive and complex to implement geometrical techniques.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the last decade Visual Odometry (VO) has become one of the
main building blocks of autonomous robot and vehicle navigation
and mapping systems, integrating and often superseding classical
odometrymeasurements and othermeans of computing robot tra-
jectory online, such as scan matching with laser scanners, GPS po-
sitioning and IMU measurements integration. The advantages of
VO are closely related to the low cost of camera devices and to
their highly informative data streams that allow for high precision
estimates. The high precision obtained by VO increases the per-
formances of full Simultaneous Localization and Mapping (SLAM)
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systemswhere VO output can be checked for consistencywith loop
closing algorithms [1,2].

In the last few years a widely accepted framework for comput-
ing motion from a sequence of images has been defined [3]. At its
core is the computation of optical flowbetween subsequent frames
fromwhich, when the camera parameters are known, the geomet-
ric computation of the rotation and translation parameters of a
framewith respect to the previous is possible. Recently a VO based
on Machine Learning (ML) techniques is emerging, where camera
calibration is not necessary and the motion model is learned from
many labelled sample pairs of optical flow-ground truth move-
ment.

Both approaches have their advantages and disadvantages. Ge-
ometric VO iswell established and several algorithms exist [4,5]. Its
precision depends on the correctness of featurematching between
consecutive frameswhich in turn is influenced by robot speed, fea-
ture tracking, motion blur, visual similarity or degenerate configu-
rations [6,7,3]. Moreover all these algorithms are very brittle to the
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presence of outlier matches in the optical flow computation. For
this reason almost always a more robust approach is adopted, us-
ing a RANSAC incarnation [8] or filtering techniques [9,10]. These
correction steps make the geometric VO algorithm not only very
successful, but also a very computationally intensive, process.

Learning-based VO on the other hand does not need to have a
model of the camera image acquisition, but relies onhaving enough
labelled data to train a regression model capable of predicting
movement from some feature extracted from video sequences.
Until now the features used have all been quantizations of the
optical flow input, but we hypothesize that other kinds of features,
for example extracted from an image segmentation process [11],
could be used aswell. The process of learning aVOmodel is amulti-
output problem and each estimated variable involved (for example
linear speed and angular speed) is usually learned independently
from the others. In any case learned VO shares the advantages of
any learned model of being robust to noise and outliers when data
used for training is subjected to the same kind of noise of test data,
as it usually is. Moreover to our knowledge, given enough data,
training a learned VO is a much easier endeavour than coding a
geometric one. Despite this fact only a few examples of this second
line of approach exist in the literature [12,13].

The purpose of this work is twofold: first we want to stress the
advantages of learning-based VO to uphold it as a viable alterna-
tive, or a useful addition, to the consolidated approaches to visual
ego-motion estimation. Past proposed ML approaches to VO have
shown the feasibility of these techniques, but were tested only on
self produced datasets, not on a comparable basis using publicly
available datasets. This also limits the possibility to compare differ-
ent ML solutions to the same problem. To overcome this limit we
conduct extensive evaluation on three publicly available datasets
spanning both indoor and outdoor environments.

The second contribution is to introduce a comparison between
two of themost successful regression algorithms to the problem of
ego-motion estimation. These two state-of-the-art techniques are
Support Vector Machines (SVM) and Gaussian Processes (GP). Both
these algorithms share the kernel mapping technique to handle
non-linear relations between features and for this reason they are
known as Kernel Machines. To our knowledge this is the first time
SVMhavebeen applied to theVOproblem,whileGPwere proposed
in [14].

This paper is organized as follows: Section 2 presents related
works on both geometric-based and learning-basedVO. Section 3.1
describes optical flow processing and feature vector construction,
while Section 3.2 introduces the two adopted regression tech-
niques, namely SVMs and GP. Section 4 describes our experimental
set-up and shows the results achieved on the three datasets con-
sidered. In Section 5we provide conclusions and discuss future de-
velopments.

2. Related works

One of the first real time VO approaches is presented in [4].
In this work a stereo system managed to navigate in an outdoor
environment outperforming classical wheeled odometry systems
and setting the trend for future research. Most geometric VO
approaches can be divided into stereo VO, using two cameras
pointing in the same direction and with synchronized acquisition,
and monocular VO, using only one camera to compute motion.

These two frameworks to VO use similar techniques but have
different problems to tackle. Stereo systems compute feature
matchings in space, i.e. between two images taken from two differ-
ent points in space looking at the same scene. From these match-
ings and knowing the distance between the camera centres of the
two shots, it is possible to triangulate the 3D positions of all the
matched points [8]. When the stereo rig moves and another pair

of images is taken, the newly computed 3D features are matched
with the previous ones, allowing motion computation. Examples
of this approach are described in [15–17].

Monocular systems instead use two different images of the
same scene, but taken at different times during camera motion.
Some of the most successful early systems were based on filters
like EKF and Particle filters as in [18,19,10] but were only suitable
for small indoor environments, like office areas. Some critical
issues for monocular VO are the parallax problem, i.e. the difficulty
of tracking distant features since their relative motion is confused
with pixel noise, and the problem of scale recovery. One of the
works that addressed the parallax problem is [9]where an inverse-
depth parametrization allows an uncertainty for each feature
spotted to be computed. The problem of scale recovery depends
on the lack of anymetric information in themotion reconstruction
process, so that each reconstruction step is computed in its
own scale, with no explicit relation to other steps. To recover
scale many approaches have been suggested. In [20] the scale is
recovered using the extra information from an IMU, while in [21]
an optimization approach using loop closing information is able to
recover scale errors. In [22] the height from the plane of motion
is used as a metric information to recover scale and in [23] the
dimension of known features, likewalls, is used to recover absolute
scale factor from an EKF failure to the next. In all cases, to address
the problem of scale uncertainty, an extra information is needed
in the form of an extra sensor, loop closing data or metric set up
information.

In general, VO precision depends mostly on scene illumina-
tion and image texture. When the images are dark and without
enough visual elements to track, VO performances drop drasti-
cally. Even when illumination and texture are good the correct-
ness of featurematching between consecutive frames is influenced
by robot speed, motion blur, visual similarity or degenerate con-
figurations [7,3,6]. To make the algorithm robust to the presence
of outlier matches in the optical flow computation often an out-
lier rejection scheme (e.g. RANSAC) is used instead to remove false
matches [9,10]. All these layers of computation make the geomet-
ric VO algorithm very successful, at the expense of a very compu-
tationally intensive process.

On the other hand machine learning approaches to VO are not
yet common, although they do exist and have proven to be effec-
tive. Learning-based approaches to VO use the same input data as
the geometric VO but learn the relation automatically from input
data to ego motion without any explicit geometric computation.
To do so they require some consistent data to learn the motion
model, but once this is learned it can be used to predict the motion
in any case where the input is similar to the training case. This ap-
proach has several underlying advantages. While geometrical VO
requires that a full and precise calibration of camera parameters
has been made before operating, learning-based VO on the con-
trary does not need camera calibration parameters and is able to
learn them, as shown in [14]. Since it is trained on metric ground
truth, learned VO in monocular settings reconstructs trajectories
with correct scale. Finally, learned approaches are robust to noise
and outliers, if enough training data are provided.

The first example of learning-based VO is the one of Roberts
et al. [24] where they divide each frame into cells and compute an
average optical flow for each block, then train a knn regressor for
each of them. The motion prediction is obtained through a voting
scheme between different blocks. Again Roberts proposes a learn-
ing approach in [12]. This time it is shown how the optical flow
field can be approximated with a linear sub-space when the en-
vironment where the robot moves has some scene depth regular-
ity [25]. The work leverages this property to learn the sub-space
through an EM algorithm. Guizilini and Ramos [14,13] use a similar
feature parametrization of optical flow and propose Coupled Gaus-
sian Processes (CGP) as a regression algorithm. These works were
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