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h i g h l i g h t s

• Preconditioning on gait used boosts terrain discrimination in a legged robot.
• Specific gaits are particularly suited for terrain perception.
• Inertial, tactile, and proprioceptive sensors are a robust terrain sensing set.
• Encoders in passive compliant joints performed best from the sensory set.
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a b s t r a c t

Discriminating or classifying different terrains is an important ability for every autonomousmobile robot.
A variety of sensors, preprocessing techniques, and algorithms in different robots were applied. However,
little attentionwas paid to theway sensory datawas generated and to the contribution of different sensory
modalities. In this work, a quadruped robot traversing different grounds using a variety of gaits is used,
equipped with a collection of proprioceptive (encoders on active, and passive compliant joints), inertial,
and foot pressure sensors. The effect of different gaits on classification performance is assessed and it is
demonstrated that separate terrain classifiers for eachmotor program should be employed. Furthermore,
poor performance of randomly generated motor commands confirms the importance of coordinated be-
havior on sensory information structuring. The collection of sensors sensitive to active, ‘‘tactile’’, terrain
exploration proved effective. Among the individual modalities, encoders on passive compliant joints de-
livered best results.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Themovement of everymobile robot, both legged andwheeled,
is strongly affected by the interaction with the environment it is
traversing. Successful perception of the terrain is a key ability that
impacts the decision-making of the robot – whether to enter a
particular area orwhich speed or gait to choose – and hence its per-
formance in different situations. Furthermore, being able to per-
ceive the terrain properties can be an important precondition for
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successful navigation performed by the robot (see e.g., [1]). Ter-
rain can be discriminated in a supervised manner – matching the
environment with predefined categories like tar or sand – or in
an unsupervised manner. The former is known as robotic terrain
classification (e.g., [2]). If the terrain classes are not available to
the robot, different unsupervisedmethods can be employed to dis-
cover thedifferent terrain types (e.g., [3]). A relatednotionhas been
put forth by Ojeda et al. [4]: terrain characterization, which aims at
determining key parameters of the terrain that are relevant to the
traversability by the robot.Wewill use terrain discrimination to en-
compass all of the above.

A large variety of methods is applied to terrain discrimination:
these include different sensors, different methods to preprocess
them, and finally different algorithms to discriminate between the
terrains. Often, sensors that perceive at a distance like cameras,
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laser scanners or radars are used, sometimes supplemented by in-
ertial sensors. Sensors that directly perceive the robot’s physical
interaction with the environment, like tactile sensors, or proprio-
ceptive sensors, which reflect how the robot’s body negotiates dif-
ferent grounds, are used less often. Furthermore, the type of motor
action the robot is using while performing terrain discrimination
is typically not considered. In this work, we investigate the possi-
bilities of distinguishing terrain types using a collection of inertial,
tactile and proprioceptive sensors and we specifically address the
consequences of using different motor actions. We choose a plat-
form with significantly different ‘‘motor regimes’’: a quadruped
robot running with multiple gaits. In order to lend more credence
to this investigation, we employ two different classification algo-
rithms (naïve Bayes and Support Vector Machines—SVM) and a
large pool of time and frequency domain features.

This article is structured as follows. Section 2 covers related
work on this topic. In Section 3, the experimental setup and meth-
ods for data collection, feature computation and classification are
sketched. Section 4 provides a mathematical formulation of the
problem. In Section 5, results and analysis are presented. Finally,
Section 6 concludes the paper with a discussion and directions of
future research.

2. Related work

Typical examples of robot terrain classification involvewheeled
platforms equipped with a camera, accompanied by a vibration
sensor, like an accelerometer [5], or amicrophone in the case of the
Mars rovers [6]. Giguere and Dudek [7] introduced a metallic rod
with an accelerometer dragged behind the robot; Ojeda et al. [4]
experimented with a richer collection of sensors. The motor
action of the robot during the classification task is typically not
considered; occasionally, different speeds [8] or speed and load
were considered [9].

There ismuch lesswork on legged robots. Filitchkin and Byl [10]
used a compact camera mounted on the Little Dog robot for
terrain classification; Belter and Skrzypczyński [11] used a laser
scanner on a hexapod to map the terrain around the robot and
choose footholds. However, legged robots are particularly suited
for tactile exploration of the terrain being traversed. Hoepflinger
et al. [12] estimated surface properties from joint motor currents
and force sensing resistors while the robot’s leg was probing the
surface; Kim et al. [13] varied the gaits in a monopod platform and
used ground reaction force and torque sensing for classification.
Giguere et al. [3], Garcia Bermudez et al. [14], and Manjanna
et al. [15] used hexapod robots with semi-circular legs and
combined several sensory modalities: inertial sensors, encoders,
and back-EMF sensors or motor current estimators. Regarding
the effect of the motor signal, the effect of gait frequency on
classification performance was studied in [14,15]. Finally, Larson
et al. [16] used a simulated robot and a limb/terrain interaction
model to evolve gaits that facilitate terrain classification based on
gait bounce—estimation of the loping motion of the robot as it
locomotes.

A variety of features is used to preprocess raw sensory streams.
Leaving visual features aside, themost common is the combination
of statistical moments (mean, variance, skewness, kurtosis etc.)
in the time domain with frequency domain features [7,3,17,12].
Some authors rely on the frequency domain only [18,9,4]. Various
algorithms are employed to perform the classification: Support
Vector Machines (SVM) [8,5,6,13], other physical probabilistic
models [19], neural networks [9,20,17,21,4], linear discriminant
analysis [22,23], principal component analysis (PCA) [9,24,13],
or adaptive Bayesian filtering [25]. In [17,3] comparison of the
traditional classification methods is provided, furthermore, in [7]
both supervised and unsupervised techniques are successfully
applied showing that PCA can be used to reduce the data
dimensionality without impacting on the classification results.

In this work, we will employ two standard classification algo-
rithms (naïve Bayes and SVM) and a feature set comprising stan-
dard time and frequency domain features. The focus, however, will
be on two aspects that have been largely overlooked so far: the
effect of motor action and the collective as well as individual per-
formance of inertial, tactile, and joint angle sensors to discriminate
the properties of different terrains. Our work has a similar flavor to
some of the work in terrain classification in legged robots that we
reviewed above [14,3,12,15], but goes further in that very different
dynamic locomotion patterns – gaits – are considered. We follow
uponpreviouswork on the Puppyquadruped robot [20,26]. In [20],
a dataset comprising three gaits was used and the performance of
different sensor sets was addressed, however, the data was col-
lapsed across the gaits. Preconditioning on the gaits was first used
in [26]; in this work, it is extended in the followingways: (i) A new,
much more comprehensive feature set, and an additional classi-
fier are introduced; (ii) Amore elaborate analysis is performed and
specific effects of individual gaits are studied; (iii) The effect of dif-
ferent sensorymodalities is analyzed; (iv) The interplay of the four
different factors impacting on the classification performance (gaits,
sensorymodalities, classifier, features) is investigated; (v) An addi-
tional dataset is added to study the contribution of additional sen-
sors and the effect of randommotor signals on classification.

3. Experimental setup

3.1. Robots and ground materials

The basic experimental setup is identical to [26]—the same
dataset was used in this work. We recapitulate it here briefly for
the reader’s convenience. The Puppy robot (see Fig. 1 left) has four
identical legs with two revolute joints per leg: the hip driven by
servomotors and the knee passive compliant—with a spring at-
tached across it. Four potentiometers measured the joint angles on
the passive knee joints and four pressure sensors recorded forces
at the robot’s feet. Linear accelerations were measured by an on-
board 3-axis accelerometer. All sensory channels were sampled at
50 Hz.

Five sets of position control commands for the servomotors
were prepared, resulting in 5 distinct gaits (bound forwards, bound
left/right, crawl, trot backwards). The target position trajectory for
every motor was a sine wave at 1 Hz with a specific amplitude,
offset, and phase lag. Gaits were chosen randomly and exercised in
2-second-intervals during which the sensory data were collected,
forming what we call epochs. At the end of each epoch the robot
could change the gait. There were two locomotion periods in every
epoch. For analysis, only data from the second period is used; the
first one – immediately after the gait transition – is discarded.

A small wall-enclosed arena of 2 × 1 m was prepared and
subsequently covered with four different ground substrates—data
was collected on each of them in turn. The materials were plastic
foil, cardboard, Styrofoam and rubber. They differed in friction1and
also in structure: cardboard and rubber had ridges that – especially
in the case of cardboard – rendered the terrain non-flat relative
to the robot size (about 1 cm high ridges vs. 6 cm leg length).
When the robot was approaching the wall of the arena, this was
detected by an infra-red distance sensor and the ‘‘trot back’’ gait
was triggered until a safe distance was established and random
gait selection resumed. Inwhat follows, wewill refer to the dataset
coming from this robot as ‘‘Real robot’’.

1 We estimated static friction coefficients between the ground materials and
robot’s feet by putting a block coveredwith the same adhesive skin as on the robot’s
feet on inclined planes coveredwith the different groundmaterials. As the adhesive
skin has asymmetrical properties, two values were obtained for each material. The
low/high values were: plastic foil: 0.39/0.39, cardboard: 0.64/1.10, Styrofoam:
0.74/1.06, rubber: 0.76/0.91.
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