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a b s t r a c t

This paper deals with the use of 0-flat normal form to control a 7 d.o.f-biped robot to follow a specified
trajectory. Sufficient geometrical conditions are given to transform the studied nonlinear systems into
a 0-flat normal form and determine the flat outputs. On the other hand, a controller design strategy is
proposed to control the walking robot. Simulations are carried out using Matlab. The results obtained are
very convincing and show the usefulness of such a method in studying highly non-linear systems and
designing control laws to drive them.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Many biped robots have been developed in recent years and
many biped robot control algorithms have been presented. A
survey of the biped robot control literature enables us to classify
several control design approaches into three classes.

The first class is based on intuitive control, it includes those
approaches which use physical intuitive control strategies [1].
In the second class the control approach is based on intelligent
learning control, it includes fuzzy logic controllers [2] and neural
network controllers [3]. The third class is based on pre-computed
reference trajectories, and an appropriate controller for geometric
tracking of theses trajectories.Within the context of trackingmany
different control methods have been explored, including optimal
control [4], computed torque control [5] and tracking control [6].
The problem of making a biped have a dynamically stable walk is
interesting due to the complexity of the model:

– Bipeds are typically high degrees of freedom mechanical
systems, that is many links and joints must be coordinated to
achieve locomotion.

– Their hybrid nature resulting from the unavoidable impacts
with the ground. These impacts produce discontinuities in the
velocity vector.

– Their variable structure; indeed the state dimension varies from
one walking phase to an other.

In fact, the problem can be considerably simplified if the system
can be shown to have a differential flatness property. To the best
knowledge of the authors, the few flatness-based control of biped
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robots concern simplified models (2 d.o.f) specific configurations
only [7,8].

In this paper we aim at using the concept of differential
flatness in order to develop a new methodology in tracking
control for robotics systems. This concept was first addressed
by Fliess and coworkers in [9]. It is a structural property of a
class of nonlinear systems, for which, all states and inputs can
be determined from flat outputs and their derivatives. Flatness
has been studied by several mathematical frameworks such as
differential algebra [9–11] and finite dimensional differential
geometry [12–14]. Differential flatness has been successfully
applied in planning and control to diverse engineering systems
and differentially flat systems are presented with and without
auxiliary constraints [9,15,16]. The book by Sira-Ramirez and
Agrawal summarizes diverse engineering applications [17], see
also [10] for a somewhat different approach. Differential flatness
has proven to be a very powerful concept for trajectory tracking
control in any dynamic locomotion problem. Themerit is that once
a system is proved to be differentially flat and the flat outputs are
determined, planning and control can be done in the flat output
without worrying about the differential equations, as every flat
output trajectory automatically satisfies the governing differential
equations.

There is another reason for the advantage of the differential
flatness approach is that in the event that a new trajectory has
to be computed (due to a change in the parameters of the system
or due to a change in the initial conditions), this can be done by
substituting the new parameters and/or initial conditions in the
appropriate formula, without having to solve a difficult non-linear
programming problem again.

With the flatness property, it only requires to compute the
flat outputs once, from which the control inputs can be found.
This control strategy will greatly reduce the computation time
by freeing it of some of the heavy and complicated optimization
methods.
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In fact, the notion of flatness is motivated by two main ideas.
First, it can be seen as a generalization of linear dynamical
systems where all linear controllable dynamical systems are flat
and static feedback linearizable [18,19]. Moreover, it provides
another efficient algorithm to solve problems of input–output
dynamic inversion of nonlinear systems. Indeed, systems that are
differentially flat have several useful characteristics that can be
exploited to generate effective control strategies for nonlinear
systems.

However, the application of differential flatness to nonlinear
control systems requires the knowledge of the flat outputs.
Unfortunately, necessary and sufficient conditions do not exist to
determine if a general system is differentially flat and there are no
general algorithms to compute the flat outputs. Althoughwe know
that a system is flat there remains the problem of determining the
flat outputs.

As already noted, since feedback linearizable dynamical sys-
tems are flat, some results in this direction are stated, such that
controllable linear systems are differentially flat. It is also known
that controllable affine dynamical systems with n states and n − 1
inputs (codimension 1) are flat [20]. However a driftless system
with n states and n − 1 inputs is flat if and only if it is control-
lable [21]. A characterization of the so-called k-flatness with the
Cartan–Kähler approach are given [22].

In fact, finding the expression of a flat output for general
nonlinear systems appears to be much more difficult. The
fundamental contribution of our paper is to present a new 0-
flat normal form for a class of nonlinear dynamical systems
whose outputs are flat. This method presents a new direction
to solve the flatness problem. Sufficient geometrical conditions
are given to transform the studied nonlinear systems into a 0-
flat normal form and determine the flat outputs. As an extension
of our results [23], where we have presented two new 0-flat
normal forms of codimension 2 for a class of controllable non-
linear systems. We aim to control a five-link d.o.f biped robot to
follow a specified trajectory using flatness based approach. We
will characterize and give some conditions for a class of nonlinear
dynamical systems under which the system exhibits differential
flatness. The approach reveals a new design based on a 0-flat
normal form, the flatness property of robotic model is derived and
used in the development of the controller. Using the differential
flatness concept, attained by normal 0-flat form, desired tracking
trajectory is demonstrated, in contrast to the approach proposed
in [24] where a partial feedback linearization based controller is
used and the actuated joints response is linearized, it will be shown
here that the proposed 0-flat normal form performs very well.

The paper is organized as follows. In the next section the
biped robot prototype is described, then the dynamic model is
presented, singling out the appropriate dynamic model for each
phase of the walking cycle. Section 3 describes the classes of 0-
flat systems study for affine dynamical systems, these classes will
be characterized by their normal forms. We give the necessary
and sufficient geometrical conditions for affine dynamical systems.
Section 4, provides case study of a five-link biped robot. Finally
simulation results are given in Section 5 to attest the efficiency of
the proposed scheme and a conclusion ends the paper.

2. The rabbit prototype description

Rabbit is a prototype robot [25] (see Fig. 1) presenting a five-link
under-actuated biped robot with seven degrees of freedom and
4 actuators, namely only the femurs and the tibias are actuated.
Rabbit is aimed to experiment walking as well as running gaits
without feet nor elastic actuators, furthermore it enables easily
transitions between gaits. By means of a guidance device, RABBIT
walks in a circular path (see Fig. 2). More technical details about
the testbed can be found in [25].

Fig. 1. The prototype testbed.

Fig. 2. The guidance device.

2.1. Dynamic model

The Lagrange formalism [26] enables the mathematical model
describing the biped moving in the sagittal plane as follows:

M(q)q̈ + N(q, q̇)q̇ + G(q) = Su (1)

where M(q) ∈ R7×7 is the inertia matrix, N(q, q̇) ∈ R7×7 con-
tains the centrifugal and Coriolis forces terms, G(q) ∈ R7 is the
vector of gravitational forces, u = [u1 u2 u3 u4]

T
∈ R4 is the

vector of control inputs, S is a torque distribution matrix, q =

[q31 q41 q32 q42 q1 x y]T ∈ R7 is the vector of generalized co-
ordinates (see Fig. 3). It is assumed that the walking movements
take place in the sagittal plane, and on a horizontal surface with-
out obstacles.

It is generally accepted that a walking cycle includes two
sequential phases of motion: single-support (SS), with one
foot grounded and double-support (DS), both feet grounded.
Accordingly, the dynamic model is composed of two sets of
equations, each corresponding to a phase of motion. In the case-
study of this note, we have 7 d.o.f in the phase of flight (both feet
in the air during running gaits), five degrees of freedom in the SS
phase and three degrees in the DS phase.
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