

Human PATHOLOGY

www.elsevier.com/locate/humpath

Original contribution

Frequent epigenetic inactivation of the receptor tyrosine kinase *EphA5* by promoter methylation in human breast cancer[☆]

De-Yuan Fu MD^{a,b,1}, Zhi-Min Wang PhD^{c,1}, Bei-Lan Wang BS^c, Li Chen MS^a, Wen-Tao Yang MD^d, Zhen-Zhou Shen MD^a, Wei Huang PhD^{c,*}, Zhi-Ming Shao MD^{a,*}

Received 10 March 2009; revised 3 June 2009; accepted 11 June 2009

Keywords:

Breast cancer; DNA methylation; EphA5; Epigenetic inactivation Summary EphA5 is a member of the Eph receptor tyrosine kinase family, which plays a critical role in the regulation of carcinogenesis. Our previous DNA methylation microarray results suggested that the CpG islands in the EphA5 promoter exhibited higher methylation levels in breast cancer tissues. In this study, we further analyzed EphA5 gene expression profiles, methylation status, and clinical implications in breast cancer. We found that the level of EphA5 mRNA was dramatically decreased in 5 different breast cancer cell lines. After treating the cell lines with 5-aza-2'-deoxycytidine (5-azadC, a demethylation agent), the levels of EphA5 mRNA and protein were significantly increased. Bisulfite sequencing and methylation-specific polymerase chain reaction detection showed that decreased expression of EphA5 was associated with its methylation status. We also found a significant correlation (P = .017) between the reduction of EphA5 mRNA levels and aberrant methylation of EphA5 in 31 paired tissue samples. In clinical samples, EphA5 methylation was detected in 64.1% (75/117) of breast tumors and 28.2% (33/117) of paired normal tissues (P < .001), which was associated with higher tumor grade (P = .024), lymph node metastasis (P = .004), and progesterone receptor-negative status (P = .008). Our data indicate that EphA5 might be a potential target for epigenetic silencing in primary breast cancer and a valuable molecular marker for breast cancer carcinogenesis and progression.

 $\ensuremath{\mathbb{C}}$ 2010 Elsevier Inc. All rights reserved.

^aBreast Cancer Institute, Cancer Hospital, Department of Oncology, Shanghai Medical College, Institutes of Biomedical Science, Fudan University, Shanghai 200032, PR China

^bDepartment of Breast Surgery, Subei People's Hospital of Jiangsu Province, Yangzhou, 225001, China

^cChinese National Human Genome Center at Shanghai, Shanghai, 201203, PR China

^dDepartment of Pathology, Cancer Hospital, Department of Oncology, Shanghai Medical College, Institutes of Biomedical Science, Fudan University, Shanghai 200032, PR China

[†] This research was supported in part by the grants from the National Basic Research Program of China (2006CB910501), National Natural Science Foundation of China (30371580, 30572109), and Shanghai Science and Technology Committee (03J14019, 06DJ14004, 06DZ19504).

^{*} Corresponding authors. Zhi-Min Shao is to be contacted at Department of Breast Surgery, Cancer Hospital/Cancer Institute, Breast Cancer Institute, Fudan University, Shanghai 200032, PR China. Wei Huang, Chinese National Human Genome Center at Shanghai, Shanghai 201203, PR China.

E-mail addresses: huangwei@chgc.sh.cn (W. Huang), zhimingshao@yahoo.com (Z. -M. Shao).

¹ These authors contributed equally to this work.

1. Introduction

Aberrant methylation of CpG islands, which are located in the promoter region of tumor-related genes, has been firmly established as the most frequent mechanism for gene inactivation in cancers [1,2]. During the development and progression of breast cancer, a number of genes involved in DNA repair, cell cycle regulation, cell adhesion, as well as cell signal transduction could be silenced by aberrant methylation [3]. Clinically, identification of specific hypermethylated genes in breast cancer could improve our understanding of carcinogenesis and progression; furthermore, these genes may also serve as valuable biomarkers for early detection and prognosis prediction of breast cancer. Recently, in an effort to identify new genes that are functionally affected by altered methylation status in breast cancer, we performed a DNA methylation microarray-based analysis on 16 paired breast cancer and normal breast tissue samples. EphA5 displayed the most significant change among the hypermethylated genes.

EphA5 is a member of the Eph receptors, the largest subgroup of the receptor tyrosine kinase family. Recent studies demonstrated that Eph and their ephrin ligands are involved in a variety of biological activities and developmental processes [4,5] and play an important role in oncogenesis and progression of many types of cancer [6] including colon cancer [7], lung cancer [8], prostate cancer [9], and breast cancer [10-12]. They were found to be valuable candidates in cancer diagnosis and prognosis prediction [7-10]. Furthermore, it was shown that targeting this receptor tyrosine kinase receptor and/or its ligand may lead to development of novel inhibition strategies and improve cancer treatment [13].

In breast cancer cell lines, a detailed study of Eph family gene expression profiles had indicated a subset that may be important in the progression of breast cancer from a noninvasive to an invasive phenotype [14]. A recent study revealed that EphA2 activity appeared to promote mammary tumor progression and invasion [15], which could be used as an attractive target for antioncogenic therapy [13,16]. Meanwhile, several reports suggested that some Eph receptors might be modulated by methylation, such as EphA3 in hematopoietic tumors [17]; EphA7 in colorectal cancer, gastric cancer, and B-cell lymphomas [18-20]; and EphB6 in breast cancer [21].

The function of the *EphA5* receptor is well characterized as an axon guidance molecule during neural development [22]. However, the potential role of *EphA5* in human carcinogenesis has never been addressed. Here, we provide evidence that *EphA5* is frequently downregulated in breast cancer cell lines and tumor tissues via aberrant hypermethylation of its promoter. We also found that *EphA5* methylation in breast cancer was significantly associated with some clinical characteristics. These findings suggested that *EphA5* might be a valuable biomarker for diagnosis and prognosis prediction in breast cancer.

2. Materials and methods

2.1. Cell lines and 5-aza-2'-deoxycytidine treatment

Seven breast cancer cell lines (T47D, MCF-7, Bacp37, ZR-75-30, SKBR-3, MDA-MB-231, and MDA-MB-435s) were obtained from American Type Culture Collection (ATCC, Manassas, VA). The nontumor galactophore cell line HBL-100 was obtained from the Cell Bank of Chinese Academy of Sciences. Cell lines ZR-75-30, Bacp-37, MCF-7, T47D, and SKBR-3, and cell lines MDA-MB-231 and MDA-MB-435s were maintained in Dulbecco's Modified Eagle Medium and Leibovitz's L-15 medium, respectively. Both media were supplemented with 10% fetal bovine serum (GIBCO; Grand Island, NY, USA), 100 U/mL penicillin, and 100 mg/mL streptomycin at 37°C in a 5% CO₂ humidified atmosphere.

Cells were seeded at a density of 5×10^4 cells per square centimeter in a 6-well plate. After 24-h incubation, fresh culture medium with or without the demethylating agent 5-aza-2'-deoxycytidine (Sigma-Aldrich Co Ltd) was added to a final concentration of 5 μ mol/L and incubated for 24 and 48 hours.

2.2. Human breast tumor and paired normal tissue

Between April and June 2006, 117 primary breast carcinomas and paired normal tissue specimens, from which 31 pairs of RNA samples were available, were obtained from the Cancer Hospital of Fudan University, Shanghai, China. Informed consent was obtained from all patients before tissue acquisition. Immediately after resection, the specimens were flash frozen in liquid nitrogen and stored at -80°C until further treatment. The pathologic information, including histologic tumor type, tumor size, axillary nodal status, tumor grade (according to the Scharf-Bloom-Richardson grading system [23]), estrogen (ER) and progesterone receptor (PR) status, and HER2/neu expression status, was determined by a breast histopathological specialist in our hospital. ER and PR status were assayed by means of immunohistochemistry as previously described in detail [24], with the standard that tumors were considered as ER or PR positive if more than 10% of the cells were stained. HER-2/ neu status was determined by immunohistochemistry using the Dako HercepTest and scored with the Dako scoring system [25]. Her-2/neu was defined as negative for scores of 0, +, and ++ in the Dako scoring system and as positive for strong membranous staining with a Dako score of +++. The mean age was 48 years (range, 26-81 years). Detailed clinicopathologic parameters are listed in Table 1.

2.3. Gene expression analysis by RT-PCR and real-time RT-PCR

Total RNA was isolated with RNeasy Mini kit (Qiagen GmbH, Hilden, Germany) and treated with DNase,

Download English Version:

https://daneshyari.com/en/article/4134379

Download Persian Version:

https://daneshyari.com/article/4134379

<u>Daneshyari.com</u>