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Local obstacle avoidance is a principle capability for mobile robots in unknown or partially known
environment. A series of velocity space methods including the curvature velocity method (CVM), the lane
curvature method (LCM) and the beam curvature method (BCM) formulate the local obstacle avoidance
problem as one of constrained optimization in the velocity space by taking the physical constraints of the
environment and the dynamics of the vehicle into account. We present a new local obstacle avoidance

approach that combines the prediction model of collision with the improved BCM. Not only does this
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method inherit the quickness of BCM and the safety of LCM, but also the proposed prediction based BCM
(PBCM) can be used to avoid moving obstacles in dynamic environments.
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1. Introduction

Local obstacle avoidance is a fundamental problem in au-
tonomous navigation for mobile robot. Most of the navigation
approaches in partially known environment combines a global
navigation method to find a feasible free path leading to the goal
and a local navigation method to follow the path avoiding obsta-
cles. Several well-known local obstacle avoidance methods work
by a direction for the robot to head in, in Cartesian space or con-
figuration space [1,2]. For example, the Artificial Potential Fields
methods (APF) [3,4] were first proposed by Khatib [5]. The main
ideais to generate attraction and repulsion forces, within the work-
ing environment of the robot, to guide it to the goal. The goal point
has an attractive influence on the robot and each obstacle tends
to push away the robot. Potential field methods provide an ele-
gant solution to the path-finding problem. Since the path is the re-
sult of the interaction of appropriate force fields, the path-finding
problem becomes a search for optimum field configurations in-
stead of the direct construction of an optimum path. APF uses
vector sums of repulsive and attractive virtual force to compute
a desired robot heading. The velocity of robot is proportional to
the magnitude of the potential vector. The Vector Field Histogram
method (VFH) [6,7] uses a two-dimensional Cartesian histogram
grid as a world model, which is updated continuously with range
data sampled by on-board range sensors. The VFH method sub-
sequently employs a two-stage data-reduction process in order
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to compute the desired control commands for the vehicle. In the
first stage the histogram grid is reduced to a one-dimensional po-
lar histogram that is constructed around the robot’s momentary
location. Each sector in the polar histogram contains a value rep-
resents the polar obstacle density in that direction. In the second
stage, the algorithm selects the most suitable sector from among all
polar histogram sectors with a low polar obstacle density, and the
steering of the robot is aligned with that direction. Robot’s veloc-
ity chosen after the direction has been selected is proportional to
the distance obstacle ahead. While this method produces smoother
travel and can handle both narrow and wide openings, it does not
account for the fact that when the robot turns they typically move
along arcs, rather than in straight lines. Further more, it is still not
adequate to deal with vehicle dynamics, which can cause problems
in cluttered environments.

Many approaches have been addressed to deal with local
obstacle avoidance problem in dynamic environment. Those works
were classified into two categories in terms of the knowledge of
the movement of obstacles [8]. In the first category, movements of
obstacles are completely unknown to the robot [9]. The collision-
free near-optimal paths for mobile robots were generated purely
depending on the information acquired by the sensor on board.
In the second category, movements of obstacles are completely
known. In recent studies some methods are presented for optimal
motion planning where a start to goal trajectory is computed at
discrete time intervals by searching a tree of feasible avoidance
maneuvers [10]. Literature [11] investigated behavior of a single
mobile robot which is navigated by an “iterated forecast and
planning” scheme in an environment where multiple obstacles are
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moving around. This navigation scheme searches a feasible path
for a robot in (x, y, t) space by a heuristic method. The movement
of each obstacle is then forecasted under the assumption that it
moves with a piecewise constant velocity.

Velocity space approaches choose angular velocity along with
linear velocity, and can take vehicle dynamics into account. The
Curvature Velocity Method [12] formulates the local obstacle
avoidance problem as one of constrained optimization in the
velocity space of the robot. Constraints that result from the
robot’s physical limitations and the environment are placed on the
velocity space of the robot. The robot chooses velocity commands
that satisfy all the constraints and maximize an objective function
that trade off speed, safety and goal-directedness. The method
has been proved to be efficient and real-time in partially known
environments indoors. However, CVM converts Cartesian space to
configuration space through expanding the radii of the obstacles
by the radius of the robot. Subsequently, it calculates the tangent
curvature by the geometric center of the obstacle. Obviously, it is
not easier to achieve space conversion than calculate the tangent
curvature by the obstacle’s center without prior knowledge of
obstacles in partially known or unknown environments. Though
CVM produces reliable, smooth and speedy navigation in office
environments, it often fails to guide the robot into an open corridor
towards the goal direction and it sometimes lets a robot head
towards an obstacle until the robot gets near the obstacle. These
problems derived from the fact that CVM chooses commands based
on the collision-free length of the arcs assumed to be robot’s
trajectories. It is easy to ignore the case that the most appropriate
path perhaps exists in short distance.

Ko and Simmons [13] realized these limitations and developed
the lane curvature method This method combines CVM with a
new directional method called the lane method, which divides the
environment into lanes, and then chooses the best lane to follow
to optimize travel along a desired heading. A local heading is then
calculated for entering and following the best lane, and CVM uses
this heading to determine the optimal linear and angular velocities.
The lane method chooses a direction to a wide and collision-free
opening since it decides heading direction based on the collision-
free distance and the width of the lane. While VFH method chooses
a direction to the opening with wide collision-free angular range
rather than an opening with big width. So VFH often forces a
robot into a narrow opening near the robot because even a narrow
opening can offer wide collision-free angular range if the opening
is close to the robot. In this respect, the lane method can provide
safer heading commands to CVM than VFH. Nevertheless, because
the lane calculation modifies the sensor vision of the environment,
the robot may not see clear space with enough distance free of
collision caused by the lack of radial projected vision. In practical
experiments, the sharp turns that caused by delays in finding clear
spaces have been observed.

Fernandez and Sanz [14] combine a new directional method,
called beam method (BM), to improve the performance of CVM as
well as LCM. The beam method calculates the best heading that
will be delivered to CVM to obtain the optimal linear and angular
velocities. The resulting combined technique is called the beam
curvature method (BCM). BM obtains a divergent radial projection
model of the environment based on the sensors’ common position.
The projection model is defined by a set of sectors or radial beams.
This model is simplified and then a set of possible candidate
beams is determined. After that, the best beam is calculated by
maximizing an objective function. The local heading target is
calculated by imposing security constraints around the best beam.
Experiments in different scenarios indicate that BCM can not only
find the opening faster, but also produce smoother trajectory than
CVM and LCM. However, BCM assumes that there are no openings
behind the obstacles, which may leads to the false selection of

optimal opening when appropriate path lies in between the two
obstacles especially in clustered environment. Furthermore, BCM
performs well in clustered environment with static obstacles, but
may fail to avoid a moving obstacle in dynamic environments. It is
because BCM itself doesn’t take the corresponding velocity of the
obstacles in robot’s local reference frame into account. Therefore,
we used a prediction model to help BCM realize local obstacle
avoidance in dynamic environment.

The remainder of this paper is organized as follows. A method
that converts Cartesian space to configuration space is introduced
in Section 2. The improved BCM has been given in Section 3.
Section 4 describes the prediction model for BCM in detail. Some
experimental results of autonomous navigation are summarized in
Section 5. Finally, conclusions are given in Section 6.

2. Conversion from Cartesian space to configuration space

Although various methods about obstacle avoidance have been
thoroughly considered in the literature, it is evident that not all
the developed methods are able to give an appropriate answer
to all possible situations. In most partially known environment,
the global pose of the robot in world reference frame and the
detailed shape of obstacles are unknown, the robot has to detect
and localize the obstacles by sensors on board. But the navigation
system can supply the robot with the angle error between its
current heading direction and the desired heading direction. For
example, a mobile vehicle in outer space to explore the unknown
planet can get its position and the target’s position in world
reference frame by the Global Position System. However, the
detailed information of obstacles located on the way to the
target is unknown. Another good case in point is that a mobile
robot can achieve the task according to the map constructed by
global vision systems located on the floor in office environments.
Nevertheless, the robot may fail to complete the task without the
capability of handling the emergency such as to avoid new added
chairs, desks or unexpected moving human beings. So, in most
cases, the geometry centers of obstacles in partially known or
unknown environment are a puzzle to the robot even though it has
seen them. Therefore, the fact that both CVM calculates tangent
curvature and BCM forms the beam in terms of the coordinates
of obstacle center limits their practical application when the prior
knowledge of the obstacle is unknown. Expanding each sensing
point by the radius of the robot is a feasible resolution for space
conversion, as is shown in Fig. 1(a), but the robot need to consider
every circles centered by the sensing points to calculate the tangent
curvatures for each obstacle.

The conversion from Cartesian space to configuration space
employs two-stage data-reduction techniques as follows:

(1) Searching for the candidate tangent points of the obstacle.
Provided point C and C; are the nearest points from the
obstacle I and II to the robot, we can denote the two obstacles
shown in Fig. 1(a) as two line segments ACB and A;C{B;
respectively. Choose point A, T; on line segment AO and point
B, T, on line segment BO as the left and right candidate tangent
points under the condition that |[T;0| = |T,0| = |CO|, where
point O is the origin point of the robot’s local reference frame.

(2) Calculating the left and right tangent curvatures of the
obstacle. Denote the candidate tangent points by their polar
coordinates. As is shown in Fig. 1(b), we calculate the curvature
centers of the left and right tangent arcs with Egs. (1) by
expanding all the left tangent points (A, T;) and right tangent
points (B, T,) by the radius of the robot, where

O;: curvature center of the left tangent arc that is tangent with
circle T; (or A) and passes through the point O;

0,: curvature center of the right tangent arc that is tangent
with circle B (or T,) and passes through the point O;
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