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Article history: This paper presents a novel approach to skill acquisition from human demonstration. A robot manipulator
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has to execute its own version of the skill. When a skill once has been acquired the robot must also be
able to generalize to other similar skills, without a new learning process. By using a motion planner that
operates in an object-related world frame called hand-state, we show that this representation simplifies

skill reconstruction and preserves the essential parts of the skill.
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1. Introduction

This article presents a method for imitation learning based
on fuzzy modeling and a next-state-planner in a Programming-
by-Demonstration (PbD) framework. For a recent comprehensive
overview of PbD, (also called Learning from Demonstration) see [1].
PbD refers to a variety of methods where the robot learns how
to perform a task by observing a human teacher, which greatly
simplifies the programming process [2-5]. One major scientific
challenge in PbD is how to make the robot capable of imitating
a human demonstration. Although the idea of copying human
motion trajectories using a simple teaching-playback method
seems straightforward, it is not realistic for several reasons.
Firstly, there is a significant difference in morphology between
the human and the robot, known as the correspondence problem
in imitation [6]. The difference in the location of the human
demonstrator and the robot might force the robot into unreachable
parts of the workspace or singular arm configurations even if
the demonstration is perfectly feasible from human viewpoint.
Secondly, in grasping tasks the reproduction of human hand
motions is not possible since even the most advanced robot hands
cannot match neither the functionality of the human hand nor its
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sensing capabilities. However, robot hands capable of autonomous
grasping can be used in PbD provided that the robot can generate
an appropriate reaching motion towards the target object, as we
will demonstrate in this article.

In this article, we present an approach to learning of reach-
ing motions where the robot uses human demonstrations in or-
der to collect essential knowledge about the task. This knowledge,
i.e., grasp-related object properties, hand-object relational trajec-
tories, and coordination of reach and grasp motions is encoded and
generalized in terms of models of hand-state space trajectories. The
hand-state components are defined such that they are perception
invariant and defines the correspondence between the human and
robot hand. The hand-state representation of the task is then em-
bedded into a next-state-planner (NSP) which enables the robot to
perform reaching motions from an arbitrary robot configuration to
the target object. The resulting reaching motion ensures that the
robot hand will approach the object in such a way that the proba-
bility for a successful grasp is maximized.

In the literature on PbD different methods and tools to cope
with problems like modeling and recognition of human and robot
motions, and the performance of demonstrated skills and grasps
have been presented. According to [7] these tools include Artificial
Neural Networks (ANNs), Radial-Basis Function Networks (RBFs),
Fuzzy Logic, or Hidden Markov Models (HMMs). On the other hand,
several examples on a comparison of fuzzy methods with other
methods like GMM and HMM can be found. For example, in a study
by Hanson et al. on tools for the design of car interiors, regarding
human-like movements with respect to object, environment and
personal characteristics, the superiority of fuzzy clustering and
modeling over GMM with regard to accuracy could be shown [8].
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Nevertheless, not a use of one single method for all tasks alone
will lead to a full success, but the combination of these methods
will be the best way to tackle the problems arising with PbD. In
our approach, the trajectory models are built on the basis of fuzzy
techniques which are most advantageous for quasi-continuous
trajectories used in our case. Compared to other methods like
Gaussian Mixture Models (GMM) this method allows a more
effective modeling on the basis of which a simple but successful
recognition of human and robot motions can be realized [9].

An NSP is a trajectory planner that plans one step ahead from
its current state. This contrasts to traditional robotic approaches
which plan the entire trajectory in advance. A few of the first
researchers to use an NSP approach in imitation learning were
ljspeert et al. [10], where they encode the trajectory in an
autonomous dynamical system with internal dynamic variables
that shapes a “landscape” used for both point attractors and limit
cycle attractors. For controlling a humanoid’s reaching motion,
Hersch and Billard [11] considered a combined controller with
two controllers running in parallel; one controller acts in joint
space, while the other one acts in Cartesian space. To generate
reaching motions and avoiding obstacles simultaneously lossifidis
and Schoéner [12] used attractor dynamics, where the target object
acts as a point attractor on the end-effector. The end-effector as
well as a redundant elbow joint avoids an obstacle as the arm
reaches for an object.

In our approach, a human demonstration guides the robot to
grasp an object. Our use of an NSP differs from previous work
[10-12] in the way it combines the demonstrated path with the
robots own plan. The use of hand-state trajectories distinguishes
our work from most previous work on imitation. According to [10],
most approaches in the literature use the joint space for motion
planning while some other approaches use the Cartesian space.
Moreover, we consider skill transferring from human to industrial
manipulator, where the correspondence is less, compared to the
scenario with skill transfer from human to a humanoid robot as
described by [10,11]. We show that human to robot skill transfer
is possible, despite the different morphologies (Section 5). We
hypothesis that skills built from own experience can be used
to further improve the performance since these skills are better
adapted to the robot’s own morphology than skills modeled from
observing the human demonstrator.

To illustrate the approach we describe five scenarios where
human demonstrations of goal-directed reach-to-grasp motions
are reproduced by a robot. Specifically, the generation of reaching
to grasp motions in a pick-and-place tasks is addressed. In the
experiments we test how well the skills perform the demonstrated
task, how well they generalize over the workspace, how they
perform in the presence of a perturbation and how skills can be
adapted from self-execution. The contributions of the work are as
follows:

1. We introduce a novel next-state-planner based on a fuzzy
modeling approach to encode human and robot trajectories.

2. We apply the hand-state concept [13] to encode motions in
hand-state trajectories and apply this in PbD.

3. The combination of the NSP and the hand-state approach
provides a tool to address the correspondence problem resulting
from the different morphology of the human and the robot.
The experiments shows how the robot can generalize and
use the demonstration despite the fundamental difference in
morphology.

4. We present a performance metric for the NSP, which enables
the robot to evaluate its performance and to adapt its actions to
fit its own morphology instead of following the demonstration.

The combination of fuzzy models and Q-learning has been
proposed by others (see for example [14,15]). Typically, the main

purpose for this combination is to use some fuzzy modeling
technique to approximate the value function in the action selection
process, which otherwise will suffers from the well-known curse of
dimensionality. In this paper fuzzy modeling is used for trajectory
encoding, while the action selection (Q-function) used later on is
approximated using Locally Weighted Projection Regression [16].

2. Learning from human demonstration

The main idea in PbD is to show the robot what to do by
demonstrating the task, and thereby letting the robot programmer
(here called demonstrator) create an executable robot program in
a simple manner. In our case, the demonstrator shows the task
by performing it in a way that seems to be feasible for the robot.
This means that we assume the demonstrator to be aware of the
particular restrictions of the robot. In this work we consider only
the body language of the demonstrator, i.e., the approach is entirely
based on proprioceptive information. A human demonstration is
interpreted under two assumptions: the type of tasks and grasps
that can be demonstrated are a priori known by the robot; only
demonstrations of power grasps (e.g., cylindrical and spherical
grasps) are considered, which can be mapped to - and executed
by - the robotic hand.

2.1. Interpretation of demonstrations in hand-state space

To enable the robot to interpret human goal-directed motions
in the same way as its own motions, we aim to mimic the
functionality of the Mirror Neuron System (MNS) model of [13].
The hand-state hypothesis from the MNS model, is used to create
the necessary associations between human and robot reaching and
grasping. Following the ideas behind the MNS model, both human
and robot motions are represented in hand-state space. A hand-
state trajectory encodes a goal-directed motion of the hand during
reaching and grasping. Thus, the hand-state space is common for
both the demonstrator and the robot and preserves the necessary
execution information. Therefore, a particular demonstration can
be converted into executable robot code, furthermore, experience
from multiple demonstrations is used to control and improve the
execution of new skills. So, when the robot tries to imitate an
observed reach and grasp motion, it has to move its own hand so
that it follows a hand-state trajectory similar to the demonstrated
one. If such a motion is successfully executed by the robot, a new
robot skill is acquired. Seen from a robot’s perspective, human
demonstrations are interpreted as follows.

If hand motions with respect to a potential target object are
associated with a particular grasp type G, it is assumed that there
must be a target object that matches the observed grasp type. In
other words, the object has certain grasp-related features, also
called affordances [13], which makes this particular grasp type
appropriate. The position of the object can be retrieved by a vision
system, or it can be estimated from the grasp type and the hand
pose, given some other motion capturing device. For each grasp
type G;, a subset of suitable object affordances is identified a priori
and learned from a set of training data. In this way, the robot
is able to associate observed grasp types G; with their respective
affordances A;.

It should be noted that the definition of the term affordance in
our work is the same as in the work of Oztop and Arbib [ 13], which
differs from many other works in robotics see Sahin et al. for an
overview [17]. Typically, affordances refer to visual object features
which link objects to particular actions or action possibilities. That
is, the affordance can tell what action can be applied to an object
but not how it can be applied. In our approach, the purpose of the
affordance is to link a particular motion primitive to an arbitrary
object that can be handled by this primitive. Therefore, we use
the affordance to define the hand-state variable which contains
all information need to execute a motion primitive. Consequently,
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