
Robotics and Autonomous Systems 57 (2009) 123–128

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Incremental reconstruction of generalized Voronoi diagrams on grids
Nidhi Kalra a,∗, Dave Ferguson b, Anthony Stentz c
a RAND Corporation, Pittsburgh, USA
b Intel Research, Pittsburgh, USA
c The Robotics Institute, Carnegie Mellon University, Pittsburgh, USA

a r t i c l e i n f o

Article history:
Received 1 May 2006
Received in revised form
27 September 2006
Accepted 31 January 2007
Available online 3 August 2007

Keywords:
Voronoi diagrams
Incremental algorithms
Robot navigation

a b s t r a c t

We present an incremental algorithm for constructing and reconstructing Generalized Voronoi Diagrams
(GVDs) on grids. Our algorithm, Dynamic Brushfire, uses techniques from the path planning community
to efficiently update GVDs when the underlying environment changes or when new information
concerning the environment is received. Dynamic Brushfire is an order of magnitude more efficient
than current approaches. In this paper we present the algorithm, compare it to current approaches on
several experimental domains involving both simulated and real data, and demonstrate its usefulness
for multirobot path planning.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Efficient path planning is a fundamental requirement for au-
tonomous mobile robots. From a single robot navigating in a
partially-known environment to a team of robots coordinating
their movements to achieve a common goal, autonomous sys-
tems must generate effective trajectories quickly. The efficiency
of path planning algorithms can be greatly affected by the type
of representation used to encode the environment. Common rep-
resentations include uniform and non-uniform grids, probabilistic
roadmaps, generalizedVoronoi diagrams (GVDs), and exact cell de-
compositions. GVDs in particular are very useful for extracting en-
vironment topologies. A GVD is a roadmap that provides all pos-
sible path homotopies in an environment containing obstacle re-
gions. The GVD also provides maximum clearance from these re-
gions. Such a representation has practical applications to many
robotic domains such as multirobot planning, stealthy navigation,
surveillance, and area coverage. Fig. 1 presents the GVD of an out-
door environment.
GVDs can be used as complete representations of their

environments [13,3] and to augment other representations such
as probabilistic roadmaps [6,5]. Given a GVD, planning from a start
position to a goal position consists of three steps. First, plan from
the start to its closest point on the GVD (the access point). Second,

∗ Corresponding address: RAND Corporation, 4570 Fifth Avenue, Suite 600,
Pittsburgh, PA 15213, USA. Tel.: +1 412 683 2300x4637; fax: +1 412 683 2800.
E-mail address: nkalra@rand.org (N. Kalra).

plan along theGVDuntil the point closest to the goal is reached (the
departure point). Then, plan from the departure point to the goal.
Since the GVD is a graph, any graph search algorithm can be used
to plan between the access and departure points, often at a fraction
of the computational expense required to plan over the complete
environment.
In many domains, robots must navigate in environments for

which prior information is unavailable, incomplete, or erroneous.
To harness the benefits of GVDs for planning in these environ-
ments, a robot must update its map when it receives sensor in-
formation during execution, reconstruct the GVD, and generate
a new plan. GVD reconstruction and replanning must occur fre-
quently because new information is received almost continuously
from sensors. However, because new information is usually local-
ized around the robot, much of the previous GVD remains correct
and only portions require repair. Unfortunately, as we discuss in
Section 2, the existing algorithms for constructing GVDs have no
local reconstruction mechanism and cannot take advantage of this
feature; instead, they discard the existing GVD and create a new
one from scratch. This frequent full reconstruction is both compu-
tationally expensive and unnecessary.
In this paper, we present the Dynamic Brushfire algorithm for

incremental reconstruction of GVDs on grids. We first discuss re-
lated techniques for GVD construction. Next, we present our algo-
rithm both intuitively and through pseudocode. We then compare
this algorithm to existing algorithms on several common robot
navigation scenarios on both real and simulated data. We also
demonstrate the usefulness of GVDs and our algorithm in partic-
ular for coordinated multirobot path planning.

0921-8890/$ – see front matter© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2007.01.009

http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
mailto:nkalra@rand.org
http://dx.doi.org/10.1016/j.robot.2007.01.009


124 N. Kalra et al. / Robotics and Autonomous Systems 57 (2009) 123–128

Fig. 1. An outdoor environment traversed by one of our John Deere e-Gator robotic platforms. (Left) The map generated by the robot (white is traversable area, black is
untraversable, gray is unknown, and the grid has 5 m spacing). (Center) The GVD constructed from this map by Dynamic Brushfire with C-space obstacle expansion. (Right)
The e-Gator and the environment in which these maps were generated.

2. Related work

The Voronoi region of an obstacle O is the set of points whose
distance to O is less than or equal to their distance to every
other obstacle in the environment. The GVD of an environment
is the intersection of two or more Voronoi regions. Each of these
intersection points is equidistant from its two (or more) closest
obstacles. Several methods exist for computing the GVD. First,
the GVD can be constructed in continuous space. For example,
Nageswara et al. [11] represent the obstacles as simple polygons
and geometrically construct the GVD, and Choset et al. [4]
simulate an agent ‘‘tracing out’’ the GVD as it moves through
the environment. Second, the GVD can be constructed in discrete
space, e.g. on grids. In this paper we focus on GVDs constructed
on grids because of the prevalence of grid-based environment
representations in mobile robot navigation. Here, the Voronoi
regions and the GVD are computed over the finite set of grid cells.
Researchers have used graphics hardware to generate grid-

based GVDs very quickly [7]; however, this is often infeasible
for mobile robot platforms with limited on-board hardware.
Alternatively, fast hardware-independent algorithms exist for
constructing GVDs on low-dimensional grids [1,2,12]. These
algorithms require as input a binary grid and a mapping from
each occupied cell in the grid to the obstacle to which it belongs
(the latter information helps determine the boundaries between
different Voronoi regions). In general, these algorithms scan the
grid and compute for each cell its closest obstacle and its distance
to that obstacle; those cells that are equidistant from two or
more obstacles are included in the GVD. These algorithms run
in linear time O(mn) where m and n are dimensions of the grid.
Thus, the computation required is a factor of the resolution of the
representation rather than the complexity of the environment.
The first of these is the well-known Brushfire algorithm [1].

Brushfire is analogous to Dijkstra’s algorithm for path planning, in
that it processes cells in an OPEN priority queue, where decreasing
priority maps to increasing distance from an obstacle. Initially,
each obstacle cell in the environment is placed on the queue with
a priority of 0 (the cell’s distance to the nearest obstacle). Then,
until the queue is empty, the highest-priority cell is removed, its
neighboring cell’s distances are computed, and any cell c whose
distance distc has been lowered is updated to be on the queuewith

priority distc . The distance distc of each cell is approximated from
the distances of its neighbors:
distc = min

a∈Adj(c)
[distance(c, a)+ dista], (1)

where Adj(c) is the set of cells adjacent to c (usually 4- or
8- connected) and distance(c, a) is the distance between c
and a (usually Manhattan or Euclidean distance). Brushfire only
makes one pass through the grid but has the added expense of
keeping a priority queue which usually requires O(log(x)) time for
operations, where x is the number of elements in the queue.
The quasi-Euclidean distance transform algorithm developed

by Rosenfeld et al. [12] makes two sequential passes through
the grid, from top to bottom and then bottom to top. For each
cell encountered, it simply performs an 8-connected search of
neighboring cells to determine the cells’ distance and nearest
obstacle using Eq. (1). The Euclidean distance transform algorithm
by Breu et al. [2] constructs the GVDby determiningwhich Voronoi
regions intersect each row in the grid. For each cell in a particular
row, it computes the exact distance to the obstacle that is closest
to it.
Although these algorithms are fast, they provide nomechanism

for incremental reconstruction. We compare their performances
with Dynamic Brushfire on several example robotics scenarios in
Section 4.

3. The dynamic Brushfire algorithm

Just as Brushfire is analogous to Dijkstra’s algorithm for
planning, Dynamic Brushfire is analogous to the unfocused D∗
family of efficient replanning algorithms [14,9]. When new
information is received concerning the environment (e.g. from
a robot’s sensors), these algorithms only propagate the new
information to portions of the map that could be affected. Thus,
they avoid unnecessarily reprocessing the entire state space. In
the grid-based GVD context, new information consists of obstacles
being asynchronously added and removed from the environment,
inwhole or in part.When an obstacle cell is removed, the distances
increase for exactly those cells that were closer to it than to any
other obstacle cell. When an obstacle cell is added, the distances
decrease for exactly those cells that are closer to it now than to
any other obstacle cell. Dynamic Brushfire is efficient because it
determines and limits processing to only cells within these two
sets.



Download	English	Version:

https://daneshyari.com/en/article/413512

Download	Persian	Version:

https://daneshyari.com/article/413512

Daneshyari.com

https://daneshyari.com/en/article/413512
https://daneshyari.com/article/413512
https://daneshyari.com/

