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a b s t r a c t

We describe how a robot can develop knowledge of the objects in its environment directly
from unsupervised sensorimotor experience. The object knowledge consists of multiple integrated
representations: trackers that form spatio-temporal clusters of sensory experience, percepts that
represent properties for the tracked objects, classes that support efficient generalization from past
experience, and actions that reliably change object percepts. We evaluate how well this intrinsically
acquired object knowledge can be used to solve externally specified tasks, including object recognition
and achieving goals that require both planning and continuous control.
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1. Introduction

One reason why people function well in a changing environ-
ment is their ability to learn from experience. Moreover, learning
from sensorimotor experience produces knowledge with seman-
tics that are grounded in this experience. Replicating this human
capability in robots is one of the goals of the robotics community.
This paper describes how a robot can acquire knowledge of objects
directly from its experience in the world.
This experiential knowledge has some significant advantages

over knowledge directly encoded by programmers as it intrinsi-
cally captures the capabilities and limitations of a robot platform.
The advantage of experiential knowledge has been demonstrated
in the field of robotmappingwhere robot generatedmaps aremore
effective than human generated maps for robot navigation [31]. A
similar situation arises when reasoning about objects, namely the
robot’s perception of the environment can differ greatly from that
of a person. Hence, a robot should autonomously develop models
for the objects in its environment, and then use these models to
perform human specified tasks.
An important capability for a robot is to solve a current

problem with knowledge acquired from past experience. Much
research effort is spent on generalizing from past experience
across individual objects (‘‘a chair’’), however a more pressing
problem for a robot is to generalize across experiences of individual
objects (‘‘the red lab chair’’) so as to reliably reason and interact
with the individual objects encountered in the environment over
extended periods of time. This approach has the advantage that
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broader object classes can potentially be formed by weakening the
restrictions on recognizing individual objects.
We describe how a physical robot can learn about objects

from its own autonomous experience in the continuous world.
The robot develops an integrated system for tracking, perceiving,
recognizing, and acting on objects. This is a key step in the larger
agenda of developmental robotics, which aims to show how a
robot can start with the ‘‘blooming, buzzing confusion’’ of low-
level sensorimotor interaction, and can learn higher-level symbolic
structures of common-sense knowledge. We assume here that the
robot has already learned the basic structure of its sensorimotor
system [24] and the ability to construct and use local maps of the
static environment [31].
The robot represents its knowledge of the individual objects in

its environmentwith trackers, percepts, classes and actions. Trackers
separate the spatio-temporal sensory experience of an individual
object from the background. This sensory experience is filtered
though perceptual functions to generate informative percepts such
as the distance to the object and the object’s shape. The robot
uses the observed shape of a tracked object to generate shape
classes, which the robot uses to efficiently generalize from past
experiences. Finally, the robot is able to interact with an individual
object using learned actions that modify the object’s percepts.
In the following sections, we describe the motivations for this

work, the representations for the objects and actions, the algorithm
for learning this knowledge from experience, the evaluation with
a physical robot, future directions and related work.

2. Motivation

Objects play a central role in the way that people reason about
the world, so it is natural to want robots to share this capability.
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However, the manner in which people think of objects is often
different from the needs of a robot. People rarely have difficulty
with object tracking, recognition, or interaction. However, it is
difficult for a robot to acquire these capabilities even individually
and a robot must be able to integrate these capabilities to solve
tasks.
The semantic dictionaryWordnet [6] treats objects primarily as

physical entities that belong somewhere on a classification tree.
Wordnet attempts to bridge the gap between the representation of
aword as a sequence of characters and its human-definedmeaning
by forming hierarchical relationships betweenwords. For example,
Wordnet states that a can is a container, while spoons and forks
are cutlery. The OpenMind Indoor Common Sense project [9] goes
further by defining multiple relationships between the names for
common household entities. This style of knowledge is of little
direct use to a robot without a connection between these words
and the robot’s experience in the world.
There is a broader role for object semantics, which is to support

the formation of object representations that are defined from the
robot’s sensorimotor experience. It is tempting to think of objects
as physical entities in the world that are derived from abstract
classes, i.e. that the experience of seeing a fork is coming from a
physical fork, which in turn is an instantiation of an abstract fork
model that is shared by all people. The reality is the reverse, people
start from sensorimotor experience, and classes are formed from
individual experiences.
Instead of considering an object to be a physical entity, we

consider an object to be an explanation for some subset of an
agent’s experience. With this approach, the semantics of an object
are intrinsically defined from the agent’s sensorimotor experience.
When the robot uses its internal representations to solve externally
specified tasks, the internal object representations may acquire a
societally shared meaning.
Our approach to learning object models is inspired by theories

in child development, in particular the assumption that coherent
motion is one of the primarymechanisms for the initial perception
of objects [28]. As modern techniques in robotics can effectively
model the local static structure of the environment, any dynamic
changes in the environmentmust come from some dynamic entity.
By relying on a static environmental model, the robot can still
perceive objects that are not moving. We use this as a basis
for focusing our attention on learning about dynamic objects.
The focus on dynamic objects provides a tractable way to make
progress on an otherwise difficult problem—to perceive objects
that have never been previously observed.
The focus of this work is to demonstrate how a robot can

acquire an integrated set of object representations that can be used
to solve externally specified tasks although the representations
are internally formed directly from the robot’s experience in the
world. If a human and a robot are to share similar meanings for
objects, then the robot must be able to perceive previously unseen
physical objects, reason about the perceived objects, and take
actions to achieve goals. The efficacy of the robot’s internal object
representations can be measured by how well they enable the
robot to accomplish externally specified tasks such as recognizing
a yoga ball or moving the recycling-bin to a goal location.

3. Representing the object

The robot’s description of physical objects is a symbolic
abstraction of the low level continuous experience of the robot.

3.1. Continuous system

From an experimenter’s perspective, a robot and its environ-
ment can be modeled as a dynamical system:

xt+1 = F(xt , ut)
zt = G(xt)
ut = Hi(z0, . . . , zt)

(1)

where xt represents the robot’s state vector at time t , zt is the raw
sense vector, and ut is the motor vector. The function F encodes
state transitionswhile the functionG encodes the observation from
each state. The functions F and G represent relationships among
the environment, the robot’s physical state, and the information
returned by its sensors, but these functions are not known to the
robot itself [12].
The robot acts by selecting a control law Hi such that the

dynamical system Eq. (1) moves the robot’s state x closer to its
goal, in the context of the current local environment. When this
control law terminates, the robot selects a new control law Hj and
continues onward.
The raw sensorimotor trace is a sequence of sense and motor

vectors.

〈z0, u0〉, 〈z1, u1〉, . . . , 〈zt , ut〉, . . . (2)

3.2. Symbolic abstraction

The components of the object knowledge are represented by a
tuple,

O ≡ 〈T ,P ,C,A〉 (3)

consisting of trackers (T ), perceptual functions (P ), classes (C),
and actions (A).
An object, considered as part of the agent’s knowledge

representation, is a hypothesized entity that accounts for a spatio-
temporally coherent cluster of sensory experience. Note that the
word ‘‘object’’, when used in this sense, does not refer to a
physical thing in the external world, but to something within the
agent’s knowledge representation that helps it make sense of its
experiences.
A tracker τ ∈ T names two corresponding things:

(1) the active process that tracks a cluster of sensory experience as
it evolves over time, and

(2) the symbol in the agent’s knowledge representation that
represents the object (i.e., the hypothesized entity that
accounts for the tracked cluster).

A perceptual function f ∈ P is used to generate the percept ft(τ )
which represents a property of τ at time t . The percept is formed
from the sensory experience by the tracker τ . Examples of simple
percepts include the distance or location of a particular object at a
particular time. A more complex percept is the shape of an object,
which can be assembled from multiple observations over time.
For a particular perceptual function f , a class σf ∈ C is an

implicitly defined set of percepts similar to an exemplar percept
q̄ = ft ′(τ ′),

σf [q̄] = {q | d(q, q̄) ≈ 0}, (4)

where d is a distance function (an example is given in Eq. (13)). For
example, a shape class is a set of shape percepts that are similar to a
prototype shape percept. Fig. 5 shows ten shapemodels, which are
percepts obtained from the robot’s sensory experiencewith the ten
depicted objects. These individual percepts belong to ten classes,
each corresponding to percepts obtained from the same real-world
object on different occasions.
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