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a b s t r a c t

Intelligent autonomous action in ordinary environments calls formaps. 3Dgeometry is generally required
for avoiding collision with complex obstacles and to self-localize in six degrees of freedom (6 DoF) (x, y, z
positions, roll, yaw, and pitch angles). Meaning, in addition to geometry, becomes inevitable if the robot is
supposed to interact with its environment in a goal-directed way. A semantic stance enables the robot to
reason about objects; it helps disambiguate or round off sensor data; and the robot knowledge becomes
reviewable and communicable.
The paper describes an approach and an integrated robot system for semantic mapping. The prime

sensor is a 3D laser scanner. Individual scans are registered into a coherent 3D geometry map by 6D
SLAM. Coarse scene features (e.g., walls, floors in a building) are determined by semantic labeling.
More delicate objects are then detected by a trained classifier and localized. In the end, the semantic
maps can be visualized for human inspection. We sketch the overall architecture of the approach,
explain the respective steps and their underlying algorithms, give examples based on a working robot
implementation, and discuss the findings.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

1.1. What is a semantic map?

If it is agreed that semantic knowledge can help an autonomous
robot act goal-directedly, then, consequently, part of this knowl-
edge has to be about objects, functionalities, events, or relations
in the robot’s environment. The data structure holding the space-
related information about this environment is the map. Typical
state-of-the-art robot maps represent the environment geometry
– often in 2D, sometimes in 3D, sometimes topologically – and,
maybe, additional sensor-relevant information such as specific fea-
tures, or texture [5]. This typical map content is in harmony with
today’s typical purpose of maps for mobile robots, namely, nav-
igation. A semantic map augments that by information about en-
tities, i.e., objects, functionalities, or events, that are located in
space.
We assume that the main purpose, or family of purposes, for a

semantic stance in map contents is some type of reasoning based
on individual entities in themap and/or their classes; examples for
such reasoning are planning, explanation, prediction, and sensor
data interpretation. To enable this reasoning, some background
knowledge about entities is required, an informal example being a
rule likeA chair typically rests on the floor. The knowledgemay come
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in any suitable knowledge representation format [4], as needed for
the type or types of reasoning to be associated with the entities
in the map. Given that such knowledge is typically independent
of space, it is not strictly part of the map; however, we require
that it exists for entities represented in the semantic map. In brief,
then:

A semantic map for a mobile robot is a map that contains,
in addition to spatial information about the environment,
assignments of mapped features to entities of known classes.
Further knowledge about these entities, independent of the
map contents, is available for reasoning in some knowledge
base with an associated reasoning engine.

In the technical part of this paper, we will use special instances of
sensor configuration,map type, and reasoning. Note, however, that
we understand semantic maps as being a more general concept
than what we have experimented with and that we will describe
below. We will get back to this in the discussion part of this paper.

1.2. System and paper architecture

Our approach uses 3D laser range and reflectance data for
environment mapping and for perceiving 3D objects on an
autonomous mobile robot. Starting from an empty map, multiple
3D scans, acquired by the robot in a stop-scan-go fashion,
are registered consistently by 6D SLAM, i.e., by a version of
Simultaneous Localization and Mapping that allows for using 6DoF
robot poses (x, y, z positions; yaw, pitch and roll angles). Then, the
coarse structure of the resulting 3D scene is interpreted using plane
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Fig. 1. System overview: From left to right: 6D SLAM acquires and registers a point cloud consisting of multiple 3D scans; scene interpretation labels the basic elements in
the scene; object detection locates previously learned objects in 6 DoF; finally, the semantic map is presented to the user.

extraction and labeling, thereby exploiting background knowledge
represented in a constraint network [34]. After that, the 3D range
and reflectance data are transformed into 2D images by off-
screen rendering, and they are used in this form for detecting
and localizing objects by two alternative approaches [35,42]; the
object localization is then transformed back into the 3D data.
Finally, the semantic map is presented using tools from computer
graphics. Fig. 1 gives a system overview. Our system contains the
classical architecture to derive symbols from sensor data [22].
While these building blocks in isolation have been described
in previous publications, we present in this paper for the first
time how these components have been put together to build
semantic maps according to our definition. Note that the simple
cascade-style architecture just described is only an initial point
for building semantic maps: In general, one would use feed-back,
e.g., from object detection to scene interpretation. The matter will
be discussed below.
The paper presents our work in terms of the building blocks

in Fig. 1. We emphasize scene interpretation and object detection,
and the feed-back control loop beyond the simple cascade in Fig. 1.
So after finishing this introduction by remarks on related work,
Section 2 summarizes some technical background concerning
the 6D SLAM algorithm used. Section 3 describes the process
of bottom-up interpretation of gross scene features. These are
augmented by recognized objects, as presented in Section 4.
Section 5 wraps up the process and provides example results.
Section 6 discusses our own results and puts them into perspective
with semantic mapping in general. We conclude the paper in
Section 7.

1.3. Related work

Robotic mapping. In the considerable body of literature about robot
maps and mapping, maps are metrical in most cases, and less
frequently, topological. As in regular language, a map contains
space-related information about the environment, i.e., not all that
a robot may know or learn about its world need go into the map.
Metric maps are supposed to represent the environment geometry
quantitatively correctly, up to discretization errors. We will use
the term geometry map henceforth to refer to maps that represent
(metrically more or less truthfully) the environment geometry.
[41, Ch. 5] gives a general introduction into the topics of maps
and mapping; [46] covers probabilistic approaches in particular.
Both textbooks also give introductions to SLAM, i.e., the process
of building a map based on imprecise sensor data and on the
imprecise robot motion model.
Most robot maps in the literature are given in 2D, usually

upright projections of the scene. Since the early 2000s, some
groups have been using pitching or rotating laser scanners for
acquiring 3D data, e.g.,[43,48,50]. As these data are much richer in
information than the 2D scansmostly used in 2Dmapping, slightly
different algorithms are used for 3D. Based on consistent 3D scans
of the environment, scan matching variants are often applied for
constructing a 3Dmap [13,18,26,30,36,40,44]. [33] summarizes the
state of the art in 3D mapping.
Only few groups in robotics have been working on variants

of semantic mapping. [21] presents a robot control architecture

that fuses mapping and object detection, resulting in a labeled
map. [20] presents a mapping system that reconstructs 3D models
assuming 3 DoF, i.e., planar, robot motion in RoboCup Rescue. In
the same context, [9] uses labeled maps for automatic behavior
activation. [1] and [3] also present mapping approaches that
include object detection. They repeatedly map environments and
identify changing occupancy of grid cells using difference maps,
focusing on representing uncertain object knowledge in such
occupancy object maps. [25] describes a probabilistic approach
for inserting in the map hierarchical environment structures and
spatial relations, all based on 2D data. [12] is a study, also based on
2D data, to combine metric, topological, and semantic aspects in a
map. It uses the semantic level for reasoning (‘‘This room contains
no sink, it cannot be the kitchen!’’).
Scene understanding. To understand understanding has been a topic
in AI from its early days on. The problem could be described as [39,
pg. 791]

We are given a set of ambiguous inputs, and from themwe have
towork backwards to decidewhat state of theworld could have
created these inputs.

Prominent lines of research in AI include language/speech
understanding, image understanding, and scene understanding —
all in the sense just quoted. More recent AI research mostly avoids
the term due to its generality, imprecision, and metaphorical
overloadedness. Yet, it describes nicelywhat is needed for building
semantic maps. Recent work in computer vision uses the term
Cognitive Vision, cf. [7]. We will come back to the approach by
Neumann and Möller [29]: They use a description logic domain
theory and a representation of perceived environment objects
and processes for aggregating bottom-up scene information from
camera images and for hypothesizing top-down features to look
for in the given image stream. That is clearly an important
ingredient of building semanticmaps. A point is typically lacking in
scene understanding work that semantic mapping in closed-loop
robot control should include: Physical robot action in sensor data
acquisition, as by changing the pose or even physical interaction
with the environment.
Symbol grounding. Object anchoring [8] is a line of robotics-
related research that aims at building up and maintaining the
links between symbolic representations of objects (as in a logic-
based knowledge representation formalism) and their images in
the sensor data stream. This is clearly related to semanticmapping;
it is also more ambitious than the latter, as anchoring assumes
projecting the development of anchored objects into the time-
space future, which semantic mapping, as considered here, does
not necessarily involve. On the same line, a semanticmap is related
to solving the symbol grounding problem [16]. Note, however,
that semantic mapping deals only with a small fraction of symbol
grounding in general.

2. Technical prolegomena: 6D SLAM

For building a semantic 3D map, we start with building some
version of geometric 3D map of the environment first. In the
cascade architecture of Fig. 1, this prior map even needs to have
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