
Robotics and Autonomous Systems 56 (2008) 5–13
www.elsevier.com/locate/robot

When hard realtime matters: Software for complex mechatronic systems

Berthold Bäuml∗, Gerd Hirzinger

Institute of Robotics and Mechatronics, DLR – German Aerospace Center, 82234 Wessling, Germany

Available online 2 October 2007

Abstract

A still growing number of software concepts and frameworks have been proposed to meet the challenges in the development of more and
more complex robotic systems, like humanoids or networked robotics. The issue of hard realtime, however, has not been the main focus of such
concepts, but is essential for building and controlling mechatronic systems. Here we discuss the specific demands of complex mechatronic systems
and present a software concept, the “agile Robot Development” (aRD) concept, which we developed at our institute to pragmatically address these
demands. We show that the performance of current computing and communication hardware allows for a flexible component-based concept with
distributed execution, even in hard realtime with rates in the kHz range.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Software concept; Hard realtime; Mechatronic system; Distributed computing; Component-based software engineering

1. Introduction

Over the last years robotic systems reached a new level
of complexity. Unlike systems with a six degrees of freedom
(DOF) arm with a gripper or simple mobile robots, we
see now torque controlled redundant arms, articulated hands,
humanoid walking robots, cooperating swarms of mobile robots
or service robots communicating with sensor networks installed
in their environments. To address the challenges of developing
software for such systems a number of software concepts and
frameworks have been proposed. This number is still growing
as until now no general abstraction has been found that fits well
with all the specific demands of the diverse robotic applications
and hardware.

Prominent representatives are ORCA [15], MARIE [17],
MIRO [30], Player [31], OROCOS [5] MCA [2], OpenHRP
[23], YARP [27] and Microsoft Robotics Studio [3]. They are
all based on the idea that a complex robotic system should be
composed from interacting modules or components in the sense
of the component-based software engineering approach [19]
with all its benefits such as flexibility, code reuse or decoupling
of the development flow in a team. To allow the components
to be distributed on a network of heterogeneous computers all

∗ Corresponding author.
E-mail address: berthold.baeuml@dlr.de (B. Bäuml).

approaches also provide tools for simplifying and standardizing
communication.

1.1. Demands of mechatronic systems

In our institute the specific demands for a software
concept arise from building and controlling highly complex
mechatronic systems, e.g. the DLR Light-Weight-Robot arms
(LBR), DLR Hands [20] or the recently built upper humanoid
body Justin (see Fig. 1) with 41 DOF [29] (Section 4 shows
further examples). The two main demands are: first, to provide
scalable computing resources in hard realtime to allow for
computationally demanding control loops in the kHz range (up
to 10 kHz in the near future) running over all DOF and second,
to support an “agile development flow” of a small, tightly
interacting team of experts in the spirit of the “Agile Software
Development” methodology [9,16]. Such a flexible, iterative
and rapid development flow is essential for building complex
systems, especially when working on research prototypes.
From our experience key points that allow for an agile process
in robotics are that the software concept used should it make
easy to connect new hardware components like sensors and
actuators, to scale computing resources by simply adding
more CPUs, to integrate software components from different
developers and to flexibly reconfigure the physical as well as
the functional communication structure of the system, which is

0921-8890/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2007.09.017

http://www.elsevier.com/locate/robot
mailto:berthold.baeuml@dlr.de
http://dx.doi.org/10.1016/j.robot.2007.09.017


6 B. Bäuml, G. Hirzinger / Robotics and Autonomous Systems 56 (2008) 5–13

Fig. 1. An example for a complex mechatronic system: the DLR upper
humanoid body Justin [29] with 41 DOF. This system is built from two DLR-
LBR-III arms with 7 DOF each, two DLR-Hand-II with 12 DOF each [20] and
a torso with 3 DOF.

essential for iterative rapid prototyping. Special to mechatronic
systems is the high complexity of the part running in hard
realtime, consisting of e.g. device drivers, sensor processing,
controllers, inverse kinematics, collision avoidance, and state
machines (see Fig. 2 for an overview of a complex mechatronic
system).

To summarize: for complex mechatronic systems an easy to
use and flexible component-based software concept allowing
for distributed execution while guaranteeing hard realtime is
desirable.

On the other hand, the performance of standard hardware has
reached a level where such a component-based, more abstract
view on the system is possible even when hard realtime has to
be guaranteed. Most important for that are the fast digital buses
of up to 1 Gb/s inside and to the robot components and the
high computing power of commodity systems in combination
with a flexible communication infrastructure built from cheap
components like Gigabit-Ethernet adapters and switches.

1.2. Robotic software concepts

The software concepts mentioned before have been
successfully used in different fields of robotic applications. In
what follows we briefly discuss to what extent they meet the
desired requirements for mechatronic systems.

ORCA [15], MARIE [17], MIRO [30] and Player [31] are
used in mobile robotics, where the realtime constraints are
rather soft with rates in the 100 Hz range. Also Microsoft
Robotics Studio [3] is targeted on soft realtime applications so
far, as the underlying operating system (OS) is Windows XP.

OROCOS [5] provides hard realtime and has been
successfully used in robotic applications with control rates of
more than 500 Hz and up to two independently controlled 6
DOF industrial robots. However, it is questionable if OROCOS
in its current form can cope with the complexity of e.g. a
humanoid robot with some ten to 100 torque-controlled DOF,
where distributed computation in hard realtime is inevitable. In
the current version of the “Real Time Toolkit” (RTT 1.2.1) of

the OROCOS project all communication between distributed
components is still based on a CORBA layer (an alternative
“Distribution Library” is only planned for the future), for
which realtime execution is not possible as the manual states:
“Components should not call remote components during real-
time execution” [6].

OpenHRP [23] is designed for the development of humanoid
robotics applications. It is based on RT-Middleware [11] for
inter-component communication, which uses CORBA and so
allows for distributed execution. In all applications reported
so far, however, the hard realtime parts running the low-level
controllers with rates in the kHz range have been implemented
in monolithic modules using proprietary communication to
reach the desired performance.

MCA [2] is used for complex robotic systems like the
humanoid robot ARMAR [13]. It allows for a hierarchical
composition of e.g. controller components while providing hard
realtime. But as it uses TCP/IP for network communication, the
concept does not natively provide hard realtime for distributed
execution.

YARP [27] is another concept used in a number of complex
robots like Domo [18]. It is lightweight, allows for the
configuration of the quality of service (QoS) of the inter-
component communication and is portable by using ACE [22].
In all the reported robotic applications the low-level high-rate
controllers run on dedicated DSP boards. But as YARP also
supports the realtime OS QNX [7], it would be interesting to see
how it performs in a complex mechatronic system like Justin
with high control rates and distributed computing on networked
PCs.

In the rest of the paper we first discuss in more detail
the demands in developing software for complex mechatronic
systems by taking a closer look on our humanoid upper
body system Justin. Then we introduce a simple software
concept, the “agile Robot Development” (aRD) concept [14],
that we developed at our institute to pragmatically address
this demands. The key points of the aRD concept are first to
add only a thin layer above the realtime operating system to
get the full hardware performance and second to have control
over the quality of service (QoS) of the connection between
components to meet the different hard, soft and non-realtime
constraints. Finally we present some performance examples and
give a overview of other complex robotic applications we have
realized with the aRD concept.

2. Analysis of a complex mechatronic system

As a concrete example for a complex mechatronic system
we analyze here the humanoid upper body system Justin we
developed at DLR for performing experiments in the control of
two-handed manipulation.

2.1. System overview

A system overview is given in (Fig. 2). Justin [29] is
built from five robot components: two LBR-III arms (7 DOF
each), a torso (3 actuated DOF) and two DLR-Hand-II (12



Download English Version:

https://daneshyari.com/en/article/413554

Download Persian Version:

https://daneshyari.com/article/413554

Daneshyari.com

https://daneshyari.com/en/article/413554
https://daneshyari.com/article/413554
https://daneshyari.com

