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a b s t r a c t

Industrial robots have been used in machining applications for their advantages such as their high
flexibility and low cost. However, the relatively low stiffness of the robot can seriously affect its posi-
tioning accuracy and its machining quality. In this paper, a posture optimization method is presented,
aiming at increasing the stiffness of the robot in machining applications. First, a performance index is
proposed to evaluate the stiffness of the robot with a given posture after an in-depth study of the re-
lationship between the translational displacement of the robot end effector and the force applied on it.
The index is then demonstrated to be a frame invariant. By maximizing the index, a robot posture op-
timization model is further established and solved by a novel solution method based on the Jacobian
matrix. Finally, experimental results achieved on a KUKA KR360-2 robot verify the correctness of the
stiffness performance index, and the application of the posture optimization method in a robotic drilling
system shows its effectiveness.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, industrial robots are being more and more widely
used in a variety of machining applications, such as drilling, mil-
ling and grinding because of their flexibility in performing tasks in
a relatively small space, and furthermore, at a lower cost. For ex-
ample, take drilling, it is an important process in the assembly of
aerospace components. Manual drilling is labor-intensive and
time-consuming, and furthermore, the quality of the drilled holes
cannot be guaranteed due to human factors. Large dedicated ma-
chines have advantages such as good accuracy, repeatability and
high machining quality, but they are not flexible and require large
installation space and a significant investment. In view of the
above situation, industrial robots, which possess flexibility and
low cost, have been adopted as effective platforms to perform
drilling tasks, and some robotic drilling systems also have been
developed and successfully used in the aerospace industry [1–4].

However, due to their relatively low stiffness, industrial robots
have always suffered from static and dynamical deformation in-
duced by cutting forces during the machining processes. The ex-
cessive static deformation may violate the positioning accuracy of
the robot, and the dynamical deformation may lead to poor ma-
chining quality and inferior production efficiency [5,6]. Therefore,

it is of great importance to increase the robot stiffness in ma-
chining applications. In fact, the robot stiffness is one of the major
subjects of research in robotics and great attention has been given
to this area. For a given standard robot, many research studies
have discussed the following aspects: (1) stiffness modeling for
serial and parallel manipulators [7–9]; (2) identification of stiff-
ness parameters [10–12]; and (3) analysis of stiffness character-
istics [11,13]. Yet the issue of how to increase the robot's stiffness
is still to be studied.

The robot stiffness depends on the following factors: (1) geo-
metric and material properties of the links; (2) actuators and other
transmission elements; and (3) robot postures. In general, for a
given standard robot, the first two factors seldom vary while its
posture varies continuously when performing tasks, and hence its
stiffness is mainly affected by the posture. Furthermore, a great
number of machining operations such as drilling or milling only
require five degrees of freedom (DOFs), where three DOFs are used
to locate the tool center point (TCP) and another two DOFs are
used to orient the tool axis. When a six-axis industrial robot is
used to perform these machining operations, there is one re-
dundant DOF [4,14–16]. Notice that the tool axis does not coincide
in general with the axis of the last joint of the wrist, resulting that
an infinite number of robot postures are available for a given po-
sition in the operational space. Therefore, it can be regarded as a
feasible scheme to increase the robot stiffness by optimizing the
robot posture. However, until now, there is not a proper perfor-
mance index to measure how stiff a robot is at a certain posture.
Angeles [13], a senior expert in robotics, suggests that the norm of
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the stiffness matrix would be a plausible candidate. Yet the stiff-
ness matrix has entries with disparate physical units, resulting in
the fact that its norm makes no physical sense. In this paper, the
compliance matrix, which is the inverse of the stiffness matrix, is
divided into blocks, and then the translational compliance sub-
matrix (TCSM) which expresses the relationship between the
translational displacement of the robot end effector (EE) and the
force applied on it is obtained. With an in-depth study of the
TCSM, a performance index in terms of the determinant of the
matrix is proposed in order to evaluate the stiffness of a robot with
a certain posture. Besides, based on the performance index, a
posture optimization method is presented to increase the stiffness
of the robot in machining applications.

The paper is structured as follows. In Section 2, the concept of
the TCSM is deduced to express the relationship between the
translational displacement of the robot EE and the force applied on
it. Based on the TCSM, in Section 3, the stiffness characteristics of
the robot in a certain direction is studied first, and then a per-
formance index to evaluate the stiffness of the robot with a certain
posture is proposed, followed by the analysis of the frame in-
variance of the index. By maximizing the stiffness performance
index, a posture optimization model is established and solved by a
novel solution method in Section 4. In Section 5, experiments to
verify the stiffness performance index and the application of the
posture optimization method in the robotic drilling system are
described. Finally, the paper is concluded in Section 6.

2. Stiffness model of the robot

Intensive research has been done in robot stiffness modeling.
Pashkevich et al. [9] summarized different types of models and
their corresponding Cartesian stiffness matrices. Among them, the
conventional model K J K JT 1= θ

− − derived by Salisbury [7] and the

enhanced model K J K K J( )T
C

1= −θ
− − derived by Chen and Kao [8]

are most commonly used. However, both models involve calcu-
lating the inverse of the Jacobian matrix, which will introduce a
calculation error, especially when the robot is close to singularity
(the determinant of Jacobian matrix is close to zero). To avoid this
problem, we adopt the compliance matrix derived by Abele et al.
[11]. Assume that the links of the robot are infinitely stiff, then the
dominant source of the compliance comes from the actuators and
transmission elements, and it can be represented by a linear tor-
sional spring for each joint, we can thereby obtain the relation-
ship:

X CF (1)Δ =

with

C JK J (2)T1= θ
−

where XΔ is the generalized displacement of the EE, including the
translational and rotational displacements;

F is the generalized force applied on the EE, including the force
and torque;

C is the compliance matrix, inverse of the stiffness matrix;
J is the Jacobian matrix of the robot and can be derived from

the robot's kinematic model using the vector product method
proposed by Whitney [17]. In general, the robot kinematics are
described by the standard Denavit–Hartenberg model [18]. For the
KUKA KR360-2 robot considered in this paper, the Denavit–Har-
tenberg parameters are given in Table 1.

Kθ is the joint stiffness matrix which is defined as:
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where ki, i 1, , 6= … is the ith joint stiffness which can be identified
by experiments using the method described in literature [12]. For the
KUKA KR360-2 robot, the joint stiffness matrix Kθ is identified as:

⎡⎣ ⎤⎦
K diag

. 1.199E10 5.0E9 4.367E9 2.217E9 2.301E9 2.328E9

=θ

Nmm/rad.
The model above represents the relationship between the

generalized displacement of the robot EE and the generalized force
applied on it. Yet the compliance matrix C has entries with dis-
parate physical units. This results in difficulties in studying the
compliance, and also the stiffness characteristics of the robot.
Considering the fact that in machining operations, the rotational
displacement of the tool can be negligible with respect to its
translational displacement and the cutting torque applied on the
tool can be neglected [16], we will mainly study the relationship
between the translational displacement of the robot EE and the
force applied on it in this paper. Assume that the rotational dis-
placement of the EE and the torque applied on it are zero, the Eq.
(1) becomes:
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where ⎡⎣ ⎤⎦F F F Ff x y z
T= is the force applied on the EE,

X x y z[ ]t
TΔ = Δ Δ Δ is the translational displacement of the EE.

And then divide the compliance matrix C in four blocks,
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where Ctt is the translational compliance submatrix (mm/N), Crr is
the rotational compliance submatrix (rad/Nmm), and Ctr is the
coupling compliance submatrix (rad/N).

Substitute Eq. (5) into Eq. (4) and expand it, which becomes:

X C F (6)t tt fΔ =

It is apparent that the translational compliance submatrix
transforms the force applied on the robot EE into its small trans-
lational displacement in three-dimensional space. In matrix Ctt , all
the elements have the same physical unit avoiding the problem of
incompatible units which exits in matrix C . It should be noted that
the translational compliance submatrix is not the inverse of the
translational stiffness submatrix as shown in [13].

3. Performance index of the robot stiffness

3.1. Stiffness characteristics of the robot in a certain direction

The stiffness of the robot is posture dependent. Furthermore,
for a robot with a given posture, the stiffness in different directions
varies widely. To study the overall stiffness of the robot, the

Table 1
Denavit–Hartenberg parameters of the KUKA KR360-2 robot.

Joint 1 2 3 4 5 6

L (mm) 500 1300 55 0 0 0
D (mm) 1045 0 1025 0 290 0
α (deg) 0 90 0 �90 90 -90
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