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a b s t r a c t

This paper presents a method of precision tracking control for industrial robot manipulators. For robotic
laser and plasma cutting tasks, the required tracking performance is much more demanding than that for
material handling, spot welding, and machine tending tasks. Challenges in control come from the
nonlinear coupled multi-body dynamics of robot manipulators, as well as the transmission error in the
geared joints. The proposed method features data-driven iterative compensation of torque and motor
reference. Motor side tracking and transmission error are handled by separate learning modules in a two-
part compensation structure. Depending on the specific setup of end-effector sensing, the method can
utilize either timed trajectory measurement or untimed two-dimensional contour inspection. Non-
parametric statistical learning is used for the compensation. Considerations on incorporating analytical
models and selecting data subsets for more efficient learning are discussed. The method is validated
using a six-axis industrial robot.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In factory automation systems, robot manipulators and ma-
chine tools serve different roles. Although a robot manipulator and
a machine tool are both multi-axis servo systems and share similar
control hardware, it is significantly more difficult to realize pre-
cision contouring control with robot manipulators. This is mainly
because machine tools have much higher drive-train stiffness. In
addition, the degrees of freedom of a machine tool are arranged in
a manner such that basic contours like straight lines and circular
arcs can be easily realized by moving as few as one or two motors,
whereas even a simple straight line requires that all axes of a robot
manipulator move coordinately. Due to these fundamental differ-
ences, robot manipulators are conventionally used for material
handling, spot welding, and machine tending, but not for
machining.

However, recent years have witnessed a fast growing trend of
robotic machining. Many advantages of robot manipulators, such
as large work range and relatively lower cost, are favorable to
flexible manufacturing. Although using robot manipulators for
turning and milling still suffers fundamental limitations brought

by the large cutting force, robotic laser and plasma cutting are
becoming increasingly popular. The tracking performance required
by laser and plasma cutting tasks is more demanding than that by
material handling, spot welding, or machine tending tasks. In the
latter cases, there are typically few requirements on contour
tracking. The main emphasis is on final positioning, which can be
easily achieved based on the high repeatability and careful cali-
bration of the robot. Precision contour tracking, on the other hand,
requires advanced real-time control.

The multi-body dynamics of a robot manipulator is very non-
linear and has strong coupling among individual axes. The com-
puted torque method [1] has become a major technique for con-
trolling robot manipulators. As illustrated in Fig. 1, the computed
torque method combines model-based torque feedforward control
with decentralized linear feedback control. Accurate torque feed-
forward control is essential to precision tracking. Dynamics of a
robot manipulator, however, is difficult to model and identify
precisely. A major challenge lies in the transmission error of the
drive-train. Industrial robot manipulators usually have high gear
ratio reducers in the drive-train. This allows the use of high-speed
low-torque motors which have relatively low costs and light
weights. Compliance, backlash, and manufacturing inaccuracy of
the reducers, however, introduce transmission error, and the
classic multi-rigid body dynamics model cannot describe the ac-
tual system behavior perfectly. In addition, the encoders measur-
ing joint rotation are commonly installed on the motor shafts
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instead on the output shafts of the reducers. In this way, the re-
solution of the encoders (in terms of measuring joint rotation) can
be effectively scaled up by the gear ratio of the reducer. Due to the
large reduction ratio, however, deflection caused by the reducer
compliance can barely be perceived by the encoders on the motor
side [2]. While contour tracking usually requires sub-millimeter
accuracy, transmission error and other uncertainties in the kine-
matic chain can easily cause several millimeters of deviation at the
tool. According to [3], 8–10% of the end-effector tracking error
comes from drive-train compliance. Precision measurement of the
tool motion therefore requires additional sensing such as a laser
tracker or a machine vision sensor.

This paper presents a method to realize precision robot track-
ing control based on trajectory or contour inspection. The method
features data-driven iterative compensation that benefits from the
repetitive nature of industrial robots' motion. Nonparametric sta-
tistical learning is used to compensate for both the feedforward
torque and the motor reference. Motor side tracking and un-
certainties in kinematic chain are handled by separate learning
modules in a two-part compensation structure. Compensation
methods based on different setups of end-effector sensing are
discussed. In the following sections, different aspects of the
method are introduced in detail. Previous work related to each
aspect of the proposed method is reviewed in their respective
sections. Experimental validation using a benchmark hole cutting
trajectory is discussed at the end.

2. Data-driven compensation through learning

Like a human worker refines his skills through experience,
machines that execute repetitive tasks can improve their perfor-
mance by learning from data collected in previous executions. A
classic method based on this idea is iterative learning control (ILC).
As shown in Fig. 3, the feedforward control is iteratively learned
from previous tracking errors by using a learning filter, whose
design is based on a convergence condition. Specifically, the con-
vergence conditions of most ILC methods have a similar form as
[4–6]

Q I LP( ( )) 1 (1)ρ − <

where ( )ρ • is a norm function, I is an identity matrix. L, P, and Q
are the descriptions (either in time domain or frequency domain)
of the learning filter, the actual system dynamics, and a Q-filter
respectively. The low-pass Q-filter improves the transient learning
behavior and robustness by restraining the learning activity within
finite frequency range. A convergence condition in the form of (1)
tolerates uncertainty of the actual system behavior to a certain
extent. Effectiveness of disturbance rejection, however, still de-
pends much on how well the actual system behavior is known.
Instead of refining feedforward control based on available knowl-
edge of the system response, adaptive control techniques refine
the system model online. The dynamic model of a tree-like multi-
body system is linear with respect to the model parameters [7].
This property allows data-driven online estimate of the model

parameters using least squares regression [8]. The multi-rigid
body dynamics model, however, cannot accommodate many
complex characteristics of the drive-train, such as the transmission
error caused by joint compliance, backlash, and manufacturing
inaccuracy. Meanwhile, a more sophisticated model that attempts
to include those factors always turns out to be overly complicated
and difficult to identify.

2.1. Nonparametric statistical learning

The limitation of parameterized models motivates the appli-
cation of nonparametric statistical learning methods. Rather than
indicating that the methods are parameter-free, the term non-
parametric means that the mapping from input to output (also
called a target) is learned without assuming a model with specific
parameterized structure. To avoid confusion, the parameters used
in nonparametric learning are called hyper-parameters. A re-
presentative method in this class is locally weighted regression
(LWR) [9]. Ref. [10] presents a comprehensive discussion on using
LWR for learning the inverse dynamics of robot manipulators. One
disadvantage of LWR is the use of a large number of hyper-para-
meters which are difficult to tune [11].

In recent years, Gaussian process regression (GPR) is becoming
increasingly popular due to simple implementation and reliable
hyper-parameter tuning. Consider a mapping f from a vector input
x to a scalar output y f x( ) ε= + , where ε is the sensing noise with
a covariance 2σε . Note that the concepts of input and output used
here should not be confused with those of general dynamic sys-
tems. Rather than assuming a parameterized structure for f, GPR
assumes f to be random, and can be characterized using a mean
function and a covariance function (also called a kernel) [12]:

( ) { }
( ) { }( )( )( ) ( )

m E f

k E f m f m

x x

x x x x x x

( )

, ( ) ( ) (2)i j i i j j

=

= − −

The kernel characterizes the correlation among input variables. If
little a priori information is known about the mapping, a zero
mean and a Gaussian kernel are often assumed. Then, given a set

of training data points { }( )y i nx , 1t i t i, , | = ∼ collected from previous

measurement, and a set of query points { }( )y i mx , 1q i q i, , | = ∼
whose output yq i, 's are to be inferred, the joint distribution of the
training data and query points is
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where K ,• ⁎ denotes the covariance matrix of X• and Xn. Xt , Xq, yt ,

and fq are aggregations of xt i, 's, xq i, 's, yt i, 's, and ( )f xq i, 's respec-
tively. Given Xq, Xt , and an actual observation of yt , the conditional
distribution of fq has a mean
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and a conditional covariance
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The conditional mean fq
¯ serves as the estimate of the output of the

query points. The conditional covariance ( )fcov q gives the con-
fidence interval of the estimate. Note that if the kernel function
indicates that a query point is barely correlated to any training
point, GPR still gives an estimate, however, with a wide confident
interval. In this sense, GPR does not require the execution to be

Fig. 1. Computed torque method.
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