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a b s t r a c t

Modern combat aircraft can fly at unusual orientations. The spatial disorientation trainer (SDT) examines
a pilot's ability to recognise these orientations, to adapt to unusual positions and to persuade the pilot to
believe in the aircraft instruments for orientation and not in his own senses. The SDT is designed as a
four-degree-of-freedom (4DoF) manipulator with rotational axes. Through rotations about these axes,
different orientations can be achieved; different acceleration forces acting on the pilot can also be si-
mulated. In this paper, a control algorithm of an SDT that improves the quality and safety of the SDT
motion while improving position accuracy and reducing servo errors is proposed. This control algorithm
uses approximate inverse dynamics based on the recursive Newton–Euler algorithm, which accounts for
the motors present in the system; it calculates motor torques, as well as the forces and moments acting
on the SDT links based on the achievable velocities and accelerations of the robot links. This algorithm
enables accurate dimensioning of the axes bearings and links as well. The maximum possible accel-
erations of the SDT links are calculated in each interpolation period based on the total moments of inertia
for the axes of rotation of these links, mutual influences of the link accelerations on each other, and
motor capabilities. The forces, moments and torques that act on the SDT links obtained with the sug-
gested algorithm have lower magnitude and smoother profile. In this study, the forces and angular ve-
locities that act on the simulator pilot in the SDT are calculated along with the roll and pitch angles of the
gondola for these forces.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Modern jet aircrafts are capable of unconventional flight with
high angles of attack, highly agile movements and rotations
around all three axes. These agile aircrafts have the capability of
achieving different orientations, especially during the perfor-
mance of so-called super-manoeuvres. The SDT examines a pilot's
ability to recognise these orientations, to adapt to them and to
persuade the pilot to believe only in the aircraft instruments for
orientation. In [1] is given the evaluation of the efficiency of a
disorientation-recovery programme performed on a SDT based on
a parallel manipulator in the form of the Gough–Stewart platform.
In [2] is shown how a quantitative understanding of the dynamics
of the vestibular otolith can be used in developing algorithms for
spatial disorientation flight trainers and in defining potentially
hazardous flight manoeuvres for safe flight-path planning.

The SDT is a 4DoF manipulator with rotational axes where the
pilot's head or chest is considered as the end-effector (Fig. 1). Arm

rotation around the vertical (i.e., planetary) axis is the primary
motion. The arm carries a gyroscopic gondola system with three
rotational axes providing yaw, pitch and roll capabilities. Their task
is to achieve any orientation. The yaw axis (z) is parallel with the
arm axis. The roll axis lies in the plane of the arm rotation, per-
pendicular to the main rotational axis (i.e., in the x direction). The
pitch (y) axis is perpendicular to the roll axis (Fig. 2). The SDT is
similar to the centrifuge motion simulator [3], whose rotational
arm carries a gimballed gondola system with two rotational axes.

In [3] is given the new control algorithm for the centrifuge
motion simulator which calculates the centrifuge kinematic and
dynamic parameters in each interpolation period, to predict its
dynamic behaviour. This method includes a new algorithm for the
inverse dynamics of robots that calculates first the successive ac-
tuator torques and the angular accelerations of the links that are
needed for the given motion. Then, it checks whether the actua-
tors can achieve these torques and accelerations in practice; if they
cannot, it calculates the maximum successive link angular accel-
erations that the motors can achieve. Instead of sending un-
achievable commands to actuators, the control unit sends com-
mands that give the maximum possible values for the angular
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accelerations and angular speeds. This strategy improves the
quality of the motion control and enables a more precise calcula-
tion of the forces and moments that act on the centrifuge links,
which is necessary for the axes bearing and links strength calcu-
lations that are performed during the centrifuge design. The new
algorithm for the inverse dynamics of robots, given in [3], is based

on the Newton–Euler equations of motion because they in-
corporate all of the forces that act on the individual links of a
robot. This is essentially for sizing the links and bearings during
the design stage. The Newton–Euler method yields a model in a
recursive form; it is composed of a forward computation of the
velocities and accelerations of each link, followed by a backward

Nomenclature

an, at, g normal (radial), tangential and Earth's acceleration
G simulator pilot's acceleration force; G0 is this force for

q1¼0
Gx, Gy, Gz transverse, lateral and longitudinal acceleration forces
Gn, Gt, Gvnormal (radial), tangential and vertical acceleration

forces

xω̂ , yω̂ , zω̂ simulator pilot's roll, pitch and yaw angular velocities
q1, q2, q3 arm (ψ), roll ring (ϕ) and gondola rotation angle (θ-

pitch)
qi̇, qi

¨ angular velocities and angular accelerations of the link
i

a1, d2 arm and gyroscope frame length
Tm

n , Dm
n , pm

n homogenous transformation matrix, orientation
matrix and position vector

x qRot( , ) rotation transformation matrix of rotating q about x
x aTrans( , )0 1 translation transformation matrix of translating a1

along x0
Δt interpolation period
xprev value of x in the previous interpolation period
sign(x) sign of x
q r1̇ , q1 max

̇ rated and maximum angular speed of link 1
q s1̇ , q e1̇ initial and desired angular speed of link 1
P1r, M1r, n1r rated power, rated torque and rated number of

revolutions of the axis 1 motor
n1m, n1max number of revolutions and maximum number of

revolutions through field weakening of the axis
1 motor

f1p overload capability of the axis 1 motor
k1, η1 gear ratio and efficiency of the gearbox of the axis 1
I1 moment of inertia of the rotor and the gear box ele-

ments of the axis 1 brought down on that rotor
Mi max, qi max

̇ maximum torque and maximum speed for that
torque, i ¼2,3,4

Mia maximum motor torque related to the motor speed, i

¼2,3,4

iω , iω̇ angular velocity and angular acceleration of link i¼1–
4

vi, vi̇ linear velocities and linear accelerations of link i¼1–4
v i

cṁ linear accelerations of link i¼1–4 centre of mass and
the external load (i¼5) centre of mass

ri
cm position of link i¼1–4 centre of mass and the external

load (i¼5) centre of mass with respect to the link i
coordinates expressed in the base coordinates

ri
cm^ position of link i¼1–4 and the external load (i¼5)

centre of mass with respect to the link i coordinates
expressed in the link i coordinates

mi mass of link i¼1–4 and the external load (i¼5)
Ii

cm moment of inertia matrix of link i¼1–4 and the ex-
ternal load (i¼5) about the centre of mass of link i
expressed in the base link coordinates

I i

cm^ moment of inertia matrix of link i¼1–4 and the ex-
ternal load (i¼5) about the centre of mass of link i
expressed in link i coordinates

Fi, Mi total force and the total moment exerted on link i¼1–
4

fi, mi force vector and the moment vector exerted on link i
by link i-1 with respect to the base coordinate frame
(i¼1–4)

fi
^ , mi

^ force and moment exerted on link i by link i-1 in link
i-1 coordinates i¼1–4

mzi
^ , mxyi

^ , Pi torque of the joint i actuator, moment acting on the
bearing i and power of the joint i actuator (i¼1–4)

fai
^ , fri

^ axial and radial force of the bearing i¼1–4
Iti total moment of inertia of link i¼1–4, links to the end

of the manipulator and the external load, reduced to
the axis zi-1

rxi
j , ryi

j , rzi
j x, y and z coordinates of link i¼1–4 and the ex-
ternal load (i¼5) centre of mass with respect to the
link j coordinates expressed in the base coordinates

Fig. 1. SDT with 4 degrees of freedom. Fig. 2. Coordinate frames of the 4-axis SDT.
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