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In this paper a high smooth trajectory planning method is presented to improve the practical
performance of tracking control for robot manipulators. The strategy is designed as a combination of
the planning with multi-degree splines in Cartesian space and multi-degree B-splines in joint space.
Following implementation, under the premise of precisely passing the via-points required, the cubic
spline is used in Cartesian space planning to make either the velocities or the accelerations at the initial
and ending moments controllable for the end effector. While the septuple B-spline is applied in joint
space planning to make the velocities, accelerations and jerks bounded and continuous, with the initial
and ending values of them configurable. In the meantime, minimum-time optimization problem is also
discussed. Experimental results show that, the proposed approach is an effective solution to trajectory
planning, with ensuring a both smooth and efficiency tracking performance with fluent movement for

Time optimization the robot manipulators.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

As known, the trajectory planning in Cartesian space (operating
space or task space) [1-4] is intuitive and easy to observe the
motion trail and attitude of the end effector of the robot, especially
when there are obstacles to avoid in the operating space. However,
such method usually fails to sidestep the problems caused by
kinematic singularities. The second method is to carry out the
trajectory planning in joint space [5-8], it provides an approach to
non-singularity workspace for the robot manipulators, the joint
trajectories can be obtained by means of interpolating functions
which meet the imposed kinematic and dynamic constraints [9].
Also, it ensures that the end effector of the robot passes through
the via-points and would be easier to adjust the trajectory for the
system controller in contrast to the former method, but do not
guarantee the definite path due to the non-linear relationship
between the trajectories in Cartesian space and those in joint space
[10,11].

With a review of the most representative interpolating functions
in the trajectory planning, polynomials are widely adopted [12].
Generally, when higher accuracy is required for the interpolation,
higher degree polynomials will be applied, which probably causes
Runge’s phenomenon and unstableness of convergence [13].
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To eliminate this negative factor, piecewise polynomials are involved
in many practical situations. Piecewise line, as a special function of
this kind, gains a more satisfactory convergence property, however, it
results in non-differentiable points at some internal knots. Therefore,
the piecewise polynomials should be at least twice differentiable to
guarantee the continuity at every internal knot. Splines, as a class of
special functions defined piecewise by multi-order polynomials, are
popular curves in tackling interpolating problems with the simplicity
of construction, accuracy of evaluation and capacity to approximate
complex shapes [14-16]. They are often preferred to polynomials
because it yields similar results, even when using low-degree poly-
nomials, while avoiding Runge’s phenomenon for higher degrees.
Actually, the motion control system of the robot manipulators
acts on the joints, so the smoothness of the joint trajectories
would be more important than that of the Cartesian trajectory of
the end effector. Aiming to create smooth enough joint trajec-
tories passing through all the internal knots, some typical works
with applying different kinds of curves in the planning algorithm
are contributed, but most of them fail to obtain satisfactory local
support property (if one knot of the curve changes, it only effects
the local trajectory besides the knot, without re-computing the
entire trajectory) of the trajectories [15-20]. B-splines, character-
ized by good local support, are invoked in some literatures to
obtain both local support property and satisfactory smoothness of
the trajectories. Specially, Thompson and Patel [21] developed a
planning method for constructing joint trajectories by using
B-splines, but it aimed at approximating rather than interpolating
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the desired sequences of the discrete joint trajectories. Saravanan,
Ramabalan, and Balamurugan [22] presented an evolutional
theory based methodology for optimal trajectory planning using
uniform cubic B-splines, where the robot joint accelerations and
jerks of the resulting trajectories can be restricted within their
limiting values. Gasparetto and Zanotto [9] applied quintic B-
spline in the interpolation to generate smooth joint trajectories,
the proposed method enables one to impose kinematic con-
straints, expressed as upper bounds on the absolute values of
velocity, acceleration and jerk of the robot joint. By the same
authors [19,20], an objective function composed of two terms
(one is proportional to the execution time and the other is
proportional to the integral of the squared jerk) is minimized
during the cubic splines and quintic B-splines based planning to
get the optimal trajectory. It's worth mentioning that, to consider
the kinematic constraints in the on-line trajectory generation
problem [23], Kroger discussed cases of constant [24] and non-
constant [25] kinematic motion constraints imposed on the robots
in depth.

High jerk of the robot joint can heavily excite the resonance
frequencies of the body structure, creating vibrations, and slow
down the tracking speed, as well as affect the tracking precision,
so keeping the absolute value of jerk in a relative small bounded
area is vital. Furthermore, if the continuity of the jerk is guaranteed,
the flexible impact created by the joint actuator will be small. With
respect to the smoothing techniques that could be found in previous
related studies, the method described in this work ensures that the
trajectory in Cartesian space is twice continuous differentiable,
while in the joint space, the velocity, acceleration and jerk are all
continuous and bounded. Moreover, the initial and the ending value
of the velocity, acceleration and jerk of each robot joint can be
configured almost arbitrarily as needed. Moreover, considering both
smooth performance and efficiency execution, optimization for
minimum-time trajectory tracking is also presented.

The rest of this paper is organized as follows. Section 2 details
the trajectory planning method in Cartesian space by splines.
In Section 3, the general formula of multi-degree B-splines is
discussed, based on it, the trajectory planning in joint space is
presented. In Section 4, minimum-time optimization is presented.
Then, experimental results on a PUMA 560 structured 6 DOF serial
robot with revolute joints are shown in Section 5. Finally, some
conclusions are given in Section 6.

2. Trajectory planning in Cartesian space

Given the discrete sequence of interpolation samples: w;=f
(;),i=0,1, ..., n,where 0<a=ty<t; <t < --- <tp=h. If there
exists s(t) with n piecewise polynomials as

s1(t) telto,t1]
s2(t) telty,ta]
s(t) = .
Sn(t) teth_1,tn]
Sj(t) = Uy, jtk+uk_1' jtkil .. .+U1‘ jt+u0j ]: 1,2,. ) (1)

where uy j, ux_1,j ..., Up, j are constant coefficients, k is the degree
of the polynomial s;(t), that satisfies

(i) the interpolating property, s(t;))=w;=f (t;);
(ii) the curves to join up, s; (t;)=s;+1(t;);
(iii) (k—1) times continl(]kcllll)s differ((zillt)iable, Si(t) =S, 1 (&),
S{(t) =57 1 (&) ... 57 () =571 ().

Then, s(t) is a spline interpolating function of degree k for the
discrete sequence w;=f (t;) [26].

In mathematics, a spline is a special function defined piecewise
by polynomials. In engineering applications, spline interpolation is
often preferred to polynomial interpolation because the interpola-
tion error can be made small even when using low-degree
polynomials for the spline. As a positive result of this feature,
spline interpolation avoids the problem of Runge’s phenomenon
which occurs when using high degree polynomials.

Aiming to enhance the smooth movement performance of the
robot manipulators, we invoke cubic splines in the interpolation
to obtain a twice continuous differentiable trajectory in Cartesian
space, i.e., the acceleration along the coordinate x (or y, z) for time
t varies continuously. Accordingly, the expression of function s; (t)
can be written as

Sj(f)zU3Jf3+U2Jt2+U1Jt+U0J‘ j=1,2,...n )

Noting that sJ’.’(t)is a first-order polynomial on the closed
interval [t;_4,t;], we suppose the value of sj (tat the ends of this
interval are known: s'(t;_1)=M;_1,s (tj)=M,;, then
(tj_t)Mj—1 +([—[j_1)Mj

Sj (t)= hj

3)

where hj=tj—t;_;.
By calculating the integrals of (3), we obtain the general
expression for the cubic spline at any time ¢ in [t_1, §]:

s;(t)

(=M + (=t )P M+ (G —D(6W_y —Mj_1 1)+ (t=t_1)(6W;—M; )

4)

Eq. (4) indicates that there are (n+1) unknown variables
(Mo, My, ...,M,,) for s(t), to get the complete expression of the
spline, we need to construct (n+1) independent equations for
Mo, My, ..., M.

Specially, using condition (iii), we get

,u'ij—l +2Mj+/lej+l =7 j:1,2,...,n—1 5)

where g;=h;/(hj+h; 1),
—wj—1)[hy][(hj+hj ).

For the n cubic polynomials comprising s(t), there are (n—1)
interior knots, giving us (n—1) equations in the form of (5). To
solve the (n+1) unknown variables, we still require two other
constraint conditions, which can be imposed upon the problem
for different reasons.

Ai=1—1, 7=6[(Wj.1—wj)lhj 1 —(w;

Case 1. s'(tp) =wy, S'(ty) =w,,.

The significance of these two constraint conditions on strat-
egy of motion control in Cartesian space is: we can set the initial
and ending value of velocity along the desired trajectory accord-
ing to the actual needs. Generally, we set w, =w;,, =0.

By such restrictions, we get two equations as

2Mo+M; =7, My_1 +2Mp =7, 6)
where 7 = 6[(w1 —wo)—hiwyl/h3, 7, = 6[haWy —(Wn—Wn_1)]/h.

From (5) and (6), we can obtain the (n+1) order linear
equations as

2 1 Mo Yo
Hq 2 /11 Ml 71
2 A M, V2
oo o n 2= )
Mo 2 Jna M4 Tn-1
1 2 My, Tn

where p;, 4; and 7;(i=0,1,...,n) are the known quantities as
referred in (5) and (6), M; are the unknown variables.



Download English Version:

https://daneshyari.com/en/article/413653

Download Persian Version:

https://daneshyari.com/article/413653

Daneshyari.com


https://daneshyari.com/en/article/413653
https://daneshyari.com/article/413653
https://daneshyari.com

