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a b s t r a c t

Cloud manufacturing (CMfg) is an extension of cloud computing in the manufacturing sector. The CMfg
concept of simulating a factory online by using Web services is a topic of interest. To distribute a si-
mulation workload evenly among simulation clouds, a simulation task is typically decomposed into small
parts that are simultaneously processed. Therefore, the time required to complete a simulation task must
be estimated in advance. However, this topic is seldom discussed. In this paper, a classifying artificial
neural network (ANN) ensemble approach is proposed for estimating the required time for a simulation
task. In the proposed methodology, simulation tasks are classified using k-means before their simulation
times are estimated. Subsequently, for each task category, an ANN is constructed to estimate the required
task time in the category. However, to reduce the impact of ANN overfitting, the required time for each
simulation task is estimated using the ANNs of all categories, and the estimation results are then
weighted and summed. Thus, the ANNs form an ensemble. In addition to the proposed methodology, six
statistical and soft computing methods were applied in real tasks. According to the experimental results,
compared with the six existing methods, the proposed methodology reduced the estimation time con-
siderably. In addition, this advantage was statistically significant according to the results of the paired t
test.

& 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

In the manufacturing sector, cloud manufacturing (CMfg) is an
extension of cloud computing that provides factories worldwide
with ubiquitous access to manufacturing resources, such as online

management information and decision support systems, virtual
capacity networks, online factory simulation services, toolkits for
converting manufacturing execution systems, and online colla-
borative design systems [25,40]. Chen and Wang [15] listed con-
cerns regarding CMfg, namely interoperability, scalability, data
security, business models, and innovative applications [19,39]. An
innovative application of CMfg is to simulate a factory online by
using Web services, that is, a cloud-based factory simulation (CFS)
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system. A CFS system is a type of cloud-based cyber-physical
system [17] that decomposes a simulation task (including the si-
mulation model and options) into parts that can be simultaneously
processed using multiple simulation clouds. A CFS system can be
implemented at the following levels [12]: replicating the same
simulation on several clouds, considering different possible values
for uncertain or stochastic parameters, evaluating the performance
of different scheduling methods, and partitioning the factory si-
mulation model. This study examined simulation workload esti-
mation, which is critical to operations at the first level.

To distribute a simulation workload evenly among simulation
clouds, a simulation task is typically decomposed into small parts
that are simultaneously processed. Therefore, the time required for
fulfilling a simulation task must be estimated in advance. In ad-
dition, estimating the simulation time of a task facilitates de-
termining the number of clouds that are required for meeting the
deadline set by a client.

In the limited relevant literature, Fujimoto [22] compared the
effectiveness of various distributed simulation strategies. He con-
cluded that the hybrid use of deadlock avoidance, deadlock detection,
and recovery techniques can provide significant speedups relative to
sequential event list implementation. Ferscha and Tripathi [20] de-
scribed five levels of parallel and distributed simulation: application,
subroutine, component, centralized event, and decentralized event
levels. Amin and Vinnakota [3] established a distribution of the fault
simulation time. They concluded that the number of inputs and the
time required for evaluating a gate are dominant factors for estab-
lishing the simulation time. In addition, the relationship between
these factors and the simulation time can be approximated using an
exponential function. Majumdar and Ochieng [29] performed a
multivariate analysis to determine factors that influence the work-
load on an air traffic controller by using simulations. They concluded
that the hybrid use of principal component and factor analyses yields
high performance. Meng and Zhao [30] performed a simulation ex-
periment involving 3D coupled thermomechanical finite element
analyses and identified three factors that influence the simulation
time: mass scaling, time scaling, and remeshing sweeps per incre-
ment. Chen and Lin [13] proposed a fuzzy collaborative forecasting
method for estimating the required time for factory simulation,
which was particularly useful for establishing an upper bound on the
simulation time. However, this method was linear and might not be
sufficiently accurate when applied to complex tasks.

To further enhance the effectiveness of estimating the time re-
quired for simulating a factory, a artificial neural network (ANN)
classification ensemble was used in this study. In the proposed
methodology, simulation tasks are classified using k-means (kM)
before their simulation times are estimated. Subsequently, an ANN
is constructed for each category to estimate the required time for
tasks in the category. Amin and Vinnakota [3] noted that nonlinear
methods such as ANNs provide a close approximation of the re-
lationship between the decisive factors and the simulation time.
However, ANN-based approaches are typically affected by over-
fitting [35]. To reduce the impact of ANN overfitting on the esti-
mation performance, the required time for each simulation task is
estimated using the ANNs of all categories. The estimation results
are then weighted and summed. Thus, the ANNs form an ensemble.

The remainder of this paper is organized as follows. Section 2
describes the three steps of the proposed methodology: classifying
tasks by using kM, estimating the simulation time by using ANNs,
and forming an ANN ensemble. In Section 3, data on real tasks are
used for evaluating the estimation performance of the proposed
methodology. In addition, six statistical and soft computing ap-
proaches are applied to these tasks for comparison. Finally, Section 4
presents the conclusion and provides directions for future research.

2. Methodology

The proposed methodology is a classifying ANN ensemble ap-
proach that estimates the required execution time for a simulation
task according to the attributes of the simulation model. The ob-
jective of this study was to optimize the estimation accuracy; in
other words, the estimation result should be as close to the actual
value as possible. The estimation accuracy can be measured using
the mean absolute error (MAE), mean absolute percentage error
(MAPE), or root mean squared error (RMSE). All the performance
measures are smaller-the-better indices.

2.1. Task classification by using kM

First, the rationale for combining kM and ANN to estimate the
simulation workload is explained as follows. Theoretically, a well-
trained ANN (an ANN that does not converge on local minima)
with a satisfactory selected topology can successfully map any
complex relationships [31]. However, estimating the simulation
workload is a complex problem, and the results of some previous
studies (e.g., [15]) have shown the incapability of an ANN in sol-
ving such a problem. By contrast, classification-based methods,
such as classification and regression tree (CART) and case-based
reasoning (CBR), achieved fair performance in some aspects [15].
This is because multiple production environments are available for
simulation. These production environments might vary (even for
manufacturing similar products), but can roughly be classified into
some common types, such as job shops, assembly lines, re-en-
trance production systems, and warehouse operations. Therefore,
classifying a simulation task before estimating the simulation time
seems to be a reasonable treatment. Hence, kM is applied in the
proposed methodology [28] to minimize the within-group varia-
bility and maximize the between‐group differences. Compared
with other classifiers, such as self-organization map (SOM) and
FCM, kM is relatively easier to implement and can be easily in-
tegrated with other modules, making it particularly suitable for
online applications [23]. In addition, kM has been applied to
classify manufacturing data such as adopted advanced manu-
facturing technologies [16] and job attributes [10].

2.2. Steps of kM

Recently, Jing et al. [26] proposed an entropy weighting kM that
minimizes the within-cluster compactness and maximizes the
negative weight entropy for stimulating more features that con-
tribute to the identification of a cluster. kM can be implemented in
the following steps:

(1) Normalize the data
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where xjq is the qth attribute of task j; j¼1�n, q¼1�Q.
(2) Produce a preliminary classification result.
(3) (Iterations) Calculate the centroid of each category as follows:
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(4) Remeasure the Euclidean distance from each task to the cen-
troid of each category.
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