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a b s t r a c t

Health monitoring and prognostics of equipment is a basic requirement for condition-based

maintenance (CBM) in many application domains where safety, reliability, and availability of the

systems are considered mission critical. As a key complement to CBM, prognostics and health

management (PHM) is an approach to system life-cycle support that seeks to reduce/eliminate

inspections and time-based maintenance through accurate monitoring, incipient faults. Conducting

successful prognosis, however, is more difficult than conducting fault diagnosis. A much broader range

of asset health related data, especially those related to the failures, shall be collected. The asset health

progression can then be possibly extracted from the congregated data, which has proved to be very

challenging. This paper presents a non-stationary segmental hidden semi-Markov model (NSHSMM)

based prognosis method to predict equipment health. Unlike previous HSMMs, the proposed NSHSMM

no longer assumes that the state-dependent transition probabilities keep the same value all the time.

That is, the probability of transiting to a less healthy state does not increase with the age. ‘‘Non-

stationary’’ means the transition probabilities will change with time. In the proposed method, in order

to characterize a deteriorating equipment, three kinds of aging factor that discount the probabilities of

staying at current state while increasing the probabilities of transitions to less healthy states are

introduced. The performances of these aging factors are compared by using historical data colleted from

three hydraulic pumps. The hazard function (h.f.) has been introduced to analyze the distribution of

lifetime with a combination of historical failure data and on-line condition monitoring data. Using h.f.,

PHM is based on a failure rate that is a function of both the equipment age and the equipment

conditions. The state values of the equipment condition considered in PHM, however, are limited to

those stochastically increasing over time and those having non-decreasing effect on the hazard rate. The

estimated state duration probability distributions can be used to predict the remaining useful life of the

systems. With the equipment PHM, the behavior of the equipment condition can be predicted.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction and literture review

A prerequisite to the deployment of condition-based main-
tenance (CBM) is effective diagnosis and prognosis. Diagnosis is
an assessment about the current and past health, which deals
with fault detection, isolation and identification based on
observed symptoms of a system when abnormity occurs. Prog-
nosis is an assessment of the future health, which deal with fault
and degradation prediction before their occurring. CBM is a
decision making strategy to enable real-time diagnosis of
impending failures and prognosis of future equipment health,
where the decision to perform maintenance is reached by
observing the ‘‘condition’’ of the system and its components.
The condition of a system can be quantified by getting data from
various sensors in the system periodically or even continuously.

CBM increases system efficiency and availability through
elimination of unnecessary maintenance. Equipment health
diagnosis and prognosis for implementing condition-based
maintenance becomes a basic and desirable requirement in many
application domains where safety, reliability, and availability of the
systems are considered mission critical. The economic ramifications
of CBM are many folds since it affects labor requirements,
replacement part costs, and the logistics of scheduling routine
maintenance. Prognostics and health management (PHM) is an
approach to system life-cycle support that seeks to reduce/
eliminate inspections and time-based maintenance through
accurate monitoring, incipient faults [1]. PHM is a key
complement to CBM that also mitigates the variability in the
maintenance process inherent in CBM driven by automated fault
detection or periodic inspection. CBM and PHM have evident
synergies. Both require in-depth knowledge of failure modes and
effects, with detail understanding of failure probability as a
function of usage and state—at the individual component level.
PHM adds a valuable option to the menu of available CBM tasks
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by mitigating the impact of failures on ‘‘safety, environment,
operations and economics’’ [2].

Conducting successful prognosis, however, is more difficult
than conducting fault diagnosis. Being able to perform precise and
reliable prognostics is the key of CBM for engineered systems,
and it is also critical for improving safety, planning missions,
scheduling maintenance, reducing maintenance costs and down
time [3]. The objective of prognosis is predicting the progression
of a fault condition to component failure and estimating
remaining useful life (RUL) of the component. The literature on
prognostic methods is limited but the concept has been gaining
importance in recent years. Unlike numerous methods available
for diagnostics, prognosis is still in its infancy, and literature is yet
to present a working model for effective prognosis [4,5]. Many
traditional methodologies used successfully in other areas or new
methodologies have been introduced into the prognostics field.
Many researchers have combined two or more techniques and
methods together to improve the performance of prognostic
models. Samanta and Nataraj presented a system for monitoring
and prognostics of machine conditions using soft computing
(SC) techniques, namely adaptive neuro-fuzzy inference system
(ANFIS). Comparison with a machine learning method, namely
support vector regression (SVR), is also presented [20]. Usually
there are three categories of prognostic model: physical model,
knowledge based model, and data-driven model. Physical model
based approaches usually employ mathematical models that are
directly tied to the physical processes that have direct or indirect
effects on the health of the components. It is usually a tough task
to accurately build a mathematical model for a physical system
with prior principles in real world applications. So the uses of
physical model based methodology are limited. For such a reason,
knowledge-based methodology such as expert systems and fuzzy
logic requiring no physical model is proposed by some
researchers. The data-driven prognostic model is based upon
statistical and learning techniques, most of which originated from
the theory of pattern recognition. Data-driven models are usually
developed from collected input/output data. These models can
process a wide variety of data types and exploit the nuances in the
data that cannot be discovered by physical systems. HMM and
HSMM belong to the data-driven model. Baruah and Chinnam
first pointed out that standard hidden Markov model could be
applied in the area of prognostics in machining processes [6]. An
integrated fault diagnostic and prognostic approach for bearing
health monitoring and CBM was introduced [7]. The proposed
scheme consists of principle component analysis (PCA), HMM, and
an adaptive stochastic fault prediction model. Camci proposed an
integrated diagnostic and prognostic architecture that employed
support vector machine (SVM) and HMM [8]. But HMMs have
some inherent limitations. One is the assumption that successive
system behavior observations are independent. The other is the
Markov assumption itself that the probability in a given state at
time t only depends on the state at time t�1 is sometimes
untenable in practical applications. In order to cope with the
inaccurate durational modeling of HMM, some authors have
proposed Hidden semi-Markov model (HSMM) to model explicitly
the state duration [9,10]. A common idea is to replace the
duration probability density function with some well-chosen
probability functions close to the durational distribution of real-
life applications. Dong and He presented an integrated framework
based on HSMM for multi-sensor equipment diagnosis and
prognosis [11,12]. In this framework, they used states of HSMM
to represent the health status of a component. The trained HSMM
can be used to diagnose the health status of a component.
Through parameter estimation of the health state duration
probability distribution and the proposed backward recursive
equations, the RUL of the component can be predicted [13].

The objective of this work is to develop a new prognostic
methodology for an NSHSMM model. Three kinds of aging factors
that discounts the probabilities of staying at current state while
increasing the probabilities of transitions to less healthy states
will be introduced into the model. A statistical algorithm with
aging factor will be designed to compute the transition prob-
ability between two health states when the equipment deteriora-
tion happened. With the historical data and the real-time
collected data, the remaining useful life of the equipment at
time t (RUL(t)) can be calculated.

2. NSHSMM based modeling framework for prognostic

2.1. Transition matrix considering equipment age

HMMs characterize doubly embedded stochastic process with
an underlying hidden stochastic process that can be observed
through some probabilistic behavior, this is where its name
‘‘hidden’’ comes from. HMM is a parametric model, its parameters
can be estimated by the vast experimental data using statistical
techniques. HMMs have some distinct characteristics that are not
possessed by some traditional methods. They could not only
reflect the randomicity of machine behaviors but also reveal their
hidden states, changing processes. Furthermore, HMMs have a
well constructed theoretical basis and easy to realize in software.
The principle of HMM based prognostics is as follows: first, build
and train N HMMs for all component health states. Between N

trained HMMs, it is usually assumed that the estimated vectors of
state transition times follow some multivariate distribution. Once
the distribution is assessed, the conditional probability distribu-
tion of a distinct state transition given the previous state
transition points can be estimated. The coordinates of the points
of intersection of the log-likelihood trajectories for different
HMMs along the life/usage axis represent the estimated ‘state
transition time instants’. It is these state transition points that
would allow one to extend the using of HMMs for prognostics.
However, only standard HMM based approaches are proposed in
such model.

HSMM is constructed by adding a temporal component into
the well-defined HMM structures. HMMs with such an explicitly
added state durational probability functions are called HSMM,
because the transition properties are no longer governed by a
Markov process. It is like a HMM except each state can emit a
sequence of observations. HSMM models the observations during
the stay in state Hi as a whole. Hidden semi-Markov chains
possess both the flexibility of hidden Markov chains for
approximating complex probability distributions and the flex-
ibility of semi-Markov chains for representing temporal
structures.

For a machine, it usually evolves through several distinct
health states prior to reaching a failure. Here failure means the
machine breakdown. Suppose now the health state has been
classified into n discrete states 1, 2, 3, y, n�1, and F. The
classification can be done by experience. Since the health state
can be tested at each sampling time point by a trained HSMM
diagnostic model [12], it can be viewed as a stochastic process
H¼{Ht: tZ0}. If Ht¼ i, the equipment is said to be in state Hi at
time t. We assume here that when the process is in state Hi, there
is a fixed probability Pi,j that the health state will be in state j at
the next time point. For a hidden Markov chain, the conditional
distribution of any future state Ht+1 given the earlier states H1,
y, Ht becomes [14]

PðHtþ1 ¼ j9Ht ¼ i,Ht�1 ¼ it�1,. . .,H2 ¼ i2,H1 ¼ i1Þ

¼ PðHtþ1 ¼ j9Ht ¼ iÞ ¼ Pij:
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