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a b s t r a c t

It is presented an integral approach for the kinematic design of spatial, hybrid closed chains which include

planar parallelograms into their kinematic structure. It is based on a systematic application of recursive

formulae intended for describing the evolution of screws through time. Due to the particular nature of the

proposed approach, it can be closely related with Lie algebras and allows to overcome the lacking of group

structure offered by a parallelogram when it is going to be considered as a component of a hybrid closed

chain. Several application examples are presented in order to show the potential of the proposed

approach.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Early research on parallel manipulators was mainly focused on
the analysis of motion types, number of degrees of freedom and
structural synthesis. Since then, due to the immense number of
potential applications offered by parallel manipulators, the variety
of designs has not ceased to grow.

Among the large number of designs of parallel manipulators, there
is an important and fundamental class which is characterized by a
kinematic architecture that includes only a single closed chain. They
are usually known as parallel manipulators with two legs, and they are
basically single closed chains. On one hand, for normal closed chains —

those with no link bifurcations where each link is only connected with
two other links — most of the methods concerning with structural
synthesis give acceptable results. On the other hand, when the closed
chain under analysis contains link bifurcations — as the inclusion of a
serially added parallelogram — problems arise. Such kinematic chains
are usually known as hybrid closed chains (HCC for short) and they
require a more elaborate formulation.

Since the introduction of parallel manipulators, a planar four-bar
linkage — coupled by four revolute joints — with its opposite links of
the same length (usually known as parallelogram or P joint) has
attracted the attention of several researchers1 [1–18]. Thus, a suitable

combination of a P joint with other kinematic pairs leads to the
design of HCCs. However, the P joint lacks a group structure and
therefore, defies a proper description by subgroups [7]. In order to
overcome such a drawback for designing HCCs, and, consequently, for
conducting the kinematic design of multi-loop parallel manipulators,
some authors have just replaced aP joint by a prismatic joint, P-type,
by using a number of approaches: the Lie group algebraic properties of
SE(3) [2,13], resorting to theory of linear transformations [17,18],
considering special Plücker coordinates [9], based on the so-called GF

coordinates [11], and analyzing the rotational capabilities of the
mechanisms [12], among others. While these authors did not give a
theoretical or convenient reasoning behind replacing a P joint by a
P-joint, the analysis presented in this paper will readily explain the
motion features associated with the P joint. Indeed, the authors of
Ref. [13] just briefly mention that for a small motion, the P joint is
equivalent to a prismatic pair. Moreover, some authors [2,3,17] also
point out that the coupler link of a P joint makes a translational
circular motion with respect to its opposite link and preserves a
constant orientation. Additionally, [4,8] went further and they report
that the feasible motion of the coupler of aP joint can be represented
with a twist reciprocal to five restraining-screws. However, the
authors of [4,8] do not mention what is the rationale behind the
finite motion of the device under study. Hence the motivation to write
this paper.

2. Motion type associated with the P joint

The main problem that is addressed when a mechanical device
or linkage is assembled from a set of links and joints is to determine
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the features associated with its resulting motion type. Thus, a
natural question arises: Is the linkage mobile and hence a mechan-
ism or is it a structure? With this idea in the mind, the objective of
this section is to provide a detailed explanation concerning with the
motion features associated with the P joint, particularly with the
motion of its coupler link.

It is well known that a planar 4R parallelogram, here called P
joint, is a single closed chain, see Fig. 1a. Let links 0 and 2 be the base
and output (coupler) links of the P joint. Thus, two RR-type serial
legs, namely, A–B and C–D, constrain the motion of the coupler with
respect to the fixed link. Hence, in order to know about the motion
features of the coupler link with respect to the fixed link, we are
going to assume that we just have the two serial chains appearing
in Fig. 1b. For that reason, we do not even know, a priori, if such a
pair of legs will be capable of producing a mobile linkage, where the
coupler link will have a certain motion (not known yet) with
respect to the fixed link.

It can be shown that the velocity state VAB, of body 2 with respect
to body 0, which is associated with leg A–B is given by

VAB �
x2=0

ðvP=AÞP-A

" #
¼ _y1=0

k

0

� �
� _y2=1

k

rB=A � k

" #
¼ _y1=0S1�

_y2=1S2,

ð1Þ

k being a unit vector along Z-axis, ri/j is a position vector going from
point j to point i, vi/j is the velocity vector of point i with respect to
point j, om=n is the angular velocity vector of link m with respect to
link n, _yk=l is the first time derivative of angle yk=l, and Sq denotes the
q-th infinitesimal screw.

On the other hand, the velocity state VCD, of body 2 with respect
to body 0, which is now associated with leg C–D is given by

VCD �
x2=0

ðvP=AÞP-A

" #
¼ _y3=0

k

rC=A � k

" #
� _y2=3

k

rD=A � k

" #

¼ _y3=0S3�
_y2=3S4, ð2Þ

where it should be noted that all the infinitesimal screws were
referred to fixed point A.

On the other hand, from the geometry shown in Fig. 1, it is
possible to formulate the following position vectors:

rB=A ¼ Lcosy1=0iþLsiny1=0j, rC=A ¼Hi,

rD=A ¼HiþLcosy3=0iþLsiny3=0j: ð3Þ

where L is the length of links 1 and 3, H is the distance between points
A and C, i and j are unit vectors along X- and Y-axes, respectively.

Thus, after performing the corresponding cross-products indi-
cated in Eqs. (1) and (2), there are obtained the so-called parametric

form of the infinitesimal screws:
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For such a set of screws, and, after a finite interval of time Dt,
the new screws are going to be given by [19]

S1ðtþDtÞ ¼ S1, ð5Þ
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equations from where the set of elements composing the Lie
subalgebra or subspace associated with each leg can be directly
obtained. It should be noted that [Si Sj], [Si [Sj Sk]]],y, are nothing
but nested Lie products of screws.

On one hand, for leg A–B it can be obtained that2

SAB ¼/S1,S2,½S1 S2�S

Fig. 1. A planar parallelogram: (a) schematic diagram and (b) corresponding serial legs.

2 In order to avoid confusions with the Lie brackets ‘‘[’’ and ‘‘]’’, and simulta-

neously attempting to use a notation frequently employed in linear algebra, we will
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