
Ontology based action planning and verification
for agile manufacturing

Stephen Balakirsky
Georgia Tech Research Institute, Atlanta, GA 30332, USA

a r t i c l e i n f o

Article history:
Received 30 April 2014
Received in revised form
24 July 2014
Accepted 21 August 2014
Available online 18 October 2014

Keywords:
Knowledge driven system
Adaptive planning
Manufacturing
Ontology
Robotics
Planning Domain Definition Language

a b s t r a c t

Many of today's robotic work cells are unable to adapt to even small changes in tasking without
significant reprogramming. This results in downtime for production lines anytime a change to a product
or procedure must be made. This paper examines a novel knowledge-driven system that provides added
agility by removing the programming burden for new activities from the robot and placing it in the
knowledge representation. The system is able to automatically recognize and adapt to changes in its
work-flow and dynamically change assignment details. The system also provides for action verification
and late binding of action parameters, thus providing flexibility by allowing plans to adapt to production
errors and changing environmental conditions. The key feature of this system is its knowledge base that
contains the necessary relationships and representations to allow for adaptation. This paper presents the
ontology that stores this knowledge as well as the overall system architecture. The manufacturing
domain of kit construction is examined as a sample test environment.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Many of today's robotic arms are capable of obtaining sub-
millimeter accuracy and repeatability. Robots such as the Fanuc LR
Mate 200iD claim 70.02 mm repeatability [1] which has been
verified in various publicly viewable experiments [2,3]. However,
these same systems lack the sensors and processing necessary to
provide a representation of the work cell in which they reside or of
the parts that they are working with. In fact, according to the
International Federation of Robotics (IFR), over 95% of all robots in
use do not have a sensor in the outer feedback loop. They rely on
fixtures to allow them to be robust in the presence of uncertainty [4].
This lack of sensing in the outer feedback loop leads to systems that
are taught or programmed to provide specific patterns of motion in
structured work cells over long production runs. These systems are
unable to detect that environmental changes have occurred, and are
therefore unable to modify their behavior to provide continued
correct operation.

Just-in-time manufacturing and small batch processing require
changes in the manufacturing process on a batch-by-batch or an
item-by-item basis. This leads to a reduction in the number of
cycles that a particular pattern of motion is useful and increases
the percentage of time necessary for robot teaching or program-
ming over actual cell operation. This teaching/programming time
requires that the cell be taken off-line which greatly impacts

productivity. For small batch processors or other customers who
must frequently change their line configuration, this frequent
downtime and lack of adaptability may be unacceptable.

Research aimed at increasing a robot's knowledge and intelli-
gence has been performed to address some of these issues. It is
anticipated that proper application of this intelligence will lead to
more agile and flexible robotic systems. Both Huckaby et al. [5] and
Pfrommer et al. [6] have examined the enumeration of basic
robotic skills that may be dynamically combined to achieve
production goals. The EU-funded RObot control for Skilled Execu-
Tion of Tasks in natural interaction with humans (ROSETTA) [7]
and Skill-Based Inspection and Assembly for Reconfigurable Auto-
mation Systems (SIARAS) [8] have proposed distributed knowl-
edge stores that contain representations of robotic knowledge and
skills. The focus of these programs is to simplify interaction
between the user and the robotized automation system.

The IEEE Robotics and Automation Society's Ontologies for
Robotics and Automation Working Group [9] has also taken the
first steps in creating a knowledge repository that will allow
greater intelligence to be resident on robotic platforms. The
Industrial Subgroup of this working group has applied this infra-
structure to create a sample kit building system. Kit building may
be viewed as a simple, but relevant manufacturing process.

Balakirsky et al. [10] describe a kitting system based on the IEEE
knowledge framework that allows greater flexibility and agility by
utilizing a Planning Domain Definition Language (PDDL) [11]
planning system to dynamically alter the system's operation in
order to adapt to variations in its anticipated work flow. The

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/rcim

Robotics and Computer-Integrated Manufacturing

http://dx.doi.org/10.1016/j.rcim.2014.08.011
0736-5845/& 2014 Elsevier Ltd. All rights reserved.

E-mail address: stephen.balakirsky@gtri.gatech.edu

Robotics and Computer-Integrated Manufacturing 33 (2015) 21–28

www.sciencedirect.com/science/journal/07365845
www.elsevier.com/locate/rcim
http://dx.doi.org/10.1016/j.rcim.2014.08.011
http://dx.doi.org/10.1016/j.rcim.2014.08.011
http://dx.doi.org/10.1016/j.rcim.2014.08.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rcim.2014.08.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rcim.2014.08.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rcim.2014.08.011&domain=pdf
mailto:stephen.balakirsky@gtri.gatech.edu
http://dx.doi.org/10.1016/j.rcim.2014.08.011


system does not require a priori information on part locations
(i.e. fixturing is not required) and is able to build new kit varieties
without altering the robot's programming. While this body of
work makes great strides in removing the need to teach/program
the robot between production runs, all of the PDDL predicates and
actions must still be programmed/taught.

This means that any modification to the production process
that requires a new PDDL predicate or action will still require that
the production line be brought down for programming/teaching.
The next logical step in adding agility to robotic production is to
remove this programming/teaching step when new actions and
predicates are required by the system. This body of work examines
utilizing a basis set of robotic primitive actions to enumerate new
robotic skills and the enhancement of the IEEE ontology to store
those skills in a reusable knowledge store. This removes the need
to program the robot for new predicates and actions. The sample
domain of kit building is utilized to demonstrate this work.

The organization of the remainder of this paper is as follows.
Section 2 provides an overview of the PDDL language and a
discussion of how PDDL is integrated into the ontology. Section 3
discusses the detailed operation of the cell and presents the
system's architecture, and Section 4 discusses the knowledge
representation and the ontology. Finally, Section 5 presents con-
clusions and future work.

2. PDDL

The objective behind domain independent planning is to
formulate a planner that is able to construct plans across a wide
variety of planning domains with no change to the planning
algorithms. The typical problem presented to such a planner
consists of

� a set of objects,
� a set of predicate expressions that define properties of objects

and relations between objects,
� a set of actions that are able to manipulate the predicate

expressions,
� a set of predicate expressions that constitute a partial world

state and make up the initial conditions,
� a set of problem goals, which are predicate expressions that are

required to be true at the end of a plan.

If an action is defined as a fully instantiated operator, then the job
of the planner is to formulate a sequential list of valid actions,
referred to as a valid plan, which will bring the system from
the state represented by the initial conditions to a state that
satisfies the problem goals (all of the problem goals are
simultaneously true).

PDDL is designed as a standard language and structure for
representing a valid plan along with all of the elements of domain
independent planning systems. Fig. 1 depicts a schema view of our
augmented PDDL representation. As in a standard PDDL represen-
tation, a set of object types is represented along with predicate
expressions and actions. The schema has been augmented with the
representation of functionalPredicates and the distinction between
RobotActions and VisionActions.

In PDDL, types must be declared before their use as parameters
to predicate expressions. For our PDDL extension, the additional
requirement has been added that all types must be defined in the
system's ontology and must be derived from the base SolidObject
or SystemConstant classes. This assures that basic properties of
objects being used as parameters are known to the system. The
SolidObject provides the basis for all physical objects in the world
while the SystemConstant represents a named system memory

location that may be used as intermediate storage of values
between commands. It is often used by VisionActions to store
values required by a future RobotAction.

Predicates are binary expressions that contain one or two
objects of defined types as arguments and provide a partial
definition of the world's state. Predicates may be used for
preconditions (predicates that must be true for an action to be
executed) as well as effects (predicates that are expected to
become true as the result of an action). An additional class of
predicates known as FunctionalPredicates has been added to this
representation. These predicates allow for mathematical opera-
tions to be performed between parameters. For example, the
predicate equalTo(obj1, value) will evaluate the equivalence
between obj1 and value while the predicate set-value(systemVari-
able, setValue, valueType) will set the value of the variable system-
Variable to setValue. The set-value predicate will evaluate to be true
if the memory location to be set exists and the value to be set is of
the correct type for that memory location.

Actions represent compound tasks that the robot cell must
accomplish. Our robot cell consists of a robotic arm and a vision
system. Therefore, our actions have been segregated into Robot-
Actions that pertain to the robot system and VisionActions that
pertain to the vision system. More information on the implemen-
tation of these types in the ontology may be found in Section 4.

3. System operation

The framework that has been implemented as part of this work
is a deliberative intelligent system based on a single level or
echelon of the hierarchal 4D/RCS reference model architecture [12]
and is tightly coupled with a domain independent planning
system. As shown in Fig. 2, 4D/RCS follows a sense-model-act
paradigm.

A central feature of 4D/RCS is its world model. As shown in
Fig. 3, the world model for this system may be decomposed into
the three parts: Reasoning, Planning, and Execution. All of the
concepts necessary for the industrial domain under test and for
PDDL plan execution are encoded in the ontology that resides in
the reasoning section of the model. The planning and execution
sections of the model are automatically generated from this
section.

Fig. 1. Description of the PDDLType class that is designed as an augmented PDDL
description language. It contains all of the information necessary for interacting
with the robot cell's robot controller and vision system.

S. Balakirsky / Robotics and Computer-Integrated Manufacturing 33 (2015) 21–2822



Download English Version:

https://daneshyari.com/en/article/413727

Download Persian Version:

https://daneshyari.com/article/413727

Daneshyari.com

https://daneshyari.com/en/article/413727
https://daneshyari.com/article/413727
https://daneshyari.com

