Robotics and Computer-Integrated Manufacturing 33 (2015) 42-55

Robotics and Computer-Integrated Manufacturing

journal homepage: www.elsevier.com/locate/rcim

=

Robotics and,

Contents lists available at ScienceDirect

Towards robust assembly with knowledge representation for the

@ CrossMark

planning domain definition language (PDDL)

Z. Kootbally **, C. Schlenoff®, C. Lawler?, T. Kramer¢, S.K. Gupta“

@ Department of Mechanical Engineering, University of Maryland, College Park, MD 20740, USA

b Intelligent Systems Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
€ Department of Mechanical Engineering, Catholic University of America, Washington, DC, USA

d Maryland Robotics Center, University of Maryland, College Park, MD, USA

ARTICLE INFO

Article history:

Received 1 May 2014

Received in revised form

31 July 2014

Accepted 11 August 2014

Available online 10 September 2014

Keywords:

PDDL (Planning Domain Definition
Language)

Planning

Replanning

Agility

Knowledge representation
Robotics

ABSTRACT

The effort described in this paper attempts to integrate agility aspects in the “Agility Performance of
Robotic Systems” (APRS) project, developed at the National Institute of Standards and Technology (NIST).
The new technical idea for the APRS project is to develop the measurement science in the form of an
integrated agility framework enabling manufacturers to assess and assure the agility performance of
their robot systems. This framework includes robot agility performance metrics, information models,
test methods, and protocols. This paper presents models for the Planning Domain Definition Language
(PDDL), used within the APRS project. PDDL is an attempt to standardize Artificial Intelligence planning
languages. The described models have been fully defined in the XML Schema Definition Language (XSDL)
and in the Web Ontology Language (OWL) for kit building applications. Kit building or kitting is a process
that brings parts that will be used in assembly operations together in a kit and then moves the kit to the
area where the parts are used in the final assembly. Furthermore, the paper discusses a tool that is
capable of automatically and dynamically generating PDDL files from the models in order to generate a
plan or to replan from scratch. Finally, the ability of the tool to update a PDDL problem file from a
relational database for replanning to recover from failures is presented.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The new technical idea for the “Agility Performance of Robotic
Systems” (APRS) project [1] at the National Institute of Standards
and Technology (NIST) is to develop the measurement science in
the form of an integrated agility framework enabling manufac-
turers to assess and assure the agility performance of their robot
systems. This framework includes robot agility performance
metrics, information models, test methods, and protocols - all of
which are validated using a combined virtual and real testing
environment. The information models enumerate and make expli-
cit the necessary knowledge for achieving rapid re-tasking and
being agile and will answer question such as “What does the robot
need to know?”, “When does it need to know it?”, and “How will it
get that knowledge?”. This framework will (1) allow manufac-
turers to easily and rapidly reconfigure and re-task robot systems

* Corresponding author.
E-mail addresses: zeid.kootbally@nist.gov (Z. Kootbally),
craig.schlenoff@nist.gov (C. Schlenoff), crlawler@umd.edu (C. Lawler),
thomas.kramer@nist.gov (T. Kramer), skgupta@umd.edu (S.K. Gupta).

http://dx.doi.org/10.1016/j.rcim.2014.08.006
0736-5845/© 2014 Elsevier Ltd. All rights reserved.

in assembly operations, (2) make robots more accessible to small
and medium organizations, (3) provide large organizations greater
efficiency in their assembly operations, and (4) allow the US to
compete effectively in the global market. Any company that is
currently deploying or planning to deploy robot systems will
benefit because it will be able to accurately predict the agility
performance of its robot systems and be able to quickly re-task
and reconfigure its assembly operations.

The increased number of new models and variants has forced
manufacturing firms to meet the demands of a diversified custo-
mer base by creating products in a short development cycle,
yielding low cost, high quality, and sufficient quantity. Modern
manufacturing enterprises have two alternatives to face the
aforementioned requirements. The first one is to use manufactur-
ing plants with excess capacity and stock of products in inventory
to smooth fluctuations in demand. The second one is to use and
increase the flexibility of their manufacturing plants to deal with
the production volume and variety. While the use of flexibility
generates the complexity of its implementation, it still is the
preferred solution. Chryssolouris [2] identified manufacturing
flexibility as an important attribute to overcome the increased

www.sciencedirect.com/science/journal/07365845
www.elsevier.com/locate/rcim
http://dx.doi.org/10.1016/j.rcim.2014.08.006
http://dx.doi.org/10.1016/j.rcim.2014.08.006
http://dx.doi.org/10.1016/j.rcim.2014.08.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rcim.2014.08.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rcim.2014.08.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rcim.2014.08.006&domain=pdf
mailto:zeid.kootbally@nist.gov
mailto:craig.schlenoff@nist.gov
mailto:crlawler@umd.edu
mailto:thomas.kramer@nist.gov
mailto:skgupta@umd.edu
http://dx.doi.org/10.1016/j.rcim.2014.08.006

Z. Kootbally et al. / Robotics and Computer-Integrated Manufacturing 33 (2015) 42-55 43

number of new models and variants from customized demands.
Flexibility, however needs to be defined in a quantified fashion
before being considered in the decision making process.

Agility is often perceived as combination of speed and flex-
ibility. Gunasekaran [3] defines agile manufacturing as the cap-
ability to survive and prosper in a competitive environment of
continuous and unpredictable change by reacting quickly and
effectively to changing markets, driven by customer-designed
products and services. To be able to respond effectively to chan-
ging customer needs in a volatile marketplace means being able to
handle variety and introduce new products quickly. Lindbergh [4]
and Sharafi and Zhang [5] mentioned that agility consists of
flexibility and speed. Essentially, an organization must be able to
respond flexibly and respond speedily [6]. Conboy and Fitzgerald [7]
identified terms such as speed [8], quick [9-12], rapid [13], and fast
[14] that occur in most definitions of agility.

The above definitions of agile manufacturing can be applied at
the assembly level of a manufacturing system. The assembly system
needs to have a certain level of flexibility in the presence of
disturbances that can be expressed by the degree of robustness.
Kannan and Parker [15] described robustness as the ability of the
system to identify and recover from faults. Robustness of a control
system was described by Leitdo [16] as the capability to remain
working correctly and relatively stable, even in the presence of
disturbances. The concept of robustness discussed in this paper is
expressed with replanning and plan repair for failure recovery (e.g.,
misalignments, incorrect parts and tooling, shortage of parts, or
missing tool). Fox et al. [17] discussed replanning and plan repair
when differences are detected between the expected and the actual
context of execution during plan execution in real environments.
The latter authors define plan repair as the work of adapting an
existing plan to a new context while perturbing the original plan as
little as possible. Replanning is defined as the work of generating a
new plan from scratch.

This paper first describes the models developed to represent
structures of the planning language in the APRS project. The APRS
project is working in collaboration with the IEEE Robotics and
Automation Society's Ontologies for Robotics and Automation
(ORA) Working Group to develop information models related to
kitting [18-21], including a model of the kitting environment and
a model of a kitting plan. Kitting or kit building is the process in
which several different, but related items are placed into a
container and supplied together as a single unit. Kitting itself
may be viewed as a specialization of the general bin-picking
problem [22,23]. In industrial assembly of manufactured products,
kitting is often performed prior to final assembly. Manufacturers
utilize kitting due to its ability to provide cost savings [24]
including saving manufacturing or assembly space [25], reducing
assembly workers walking and searching times [26], and increas-
ing line flexibility [27] and balance [28]. It is anticipated that
utilization of the knowledge representation will allow for the
development of higher performing kitting systems and will lead to
the development of agile automated robot assembly.

Planning for kitting relies on the Planning Domain Definition
Language (PDDL) [29]. In order to operate, the PDDL planners
require a PDDL file-set that consists of two files that specify the
domain and the problem. From these files, the planning system
creates an additional static plan file. Structures of PDDL domain
and problem files are fully defined in each of two languages: XML
Schema Definition Language (XSDL) [30] and Web Ontology
Language (OWL) [31]. Furthermore, this paper describes a tool
that is capable of automatically and dynamically generating PDDL
domain and problem files from the OWL models. The tool is also
used to repair a PDDL problem file in order to replan from failures.

This paper is structured as follows: an overview of the knowl-
edge driven methodology for the APRS project is presented in

Section 2. The XSDL models that were developed to represent
PDDL domain and problem files are discussed in Section 3. A tool
that is capable of (1) dynamically producing PDDL domain and
problem files from OWL files and (2) updating PDDL problem files
from a dynamic relational database is described in Sections 4 and 5,
respectively. Finally, concluding remarks and future work are
addressed in Section 6.

2. Knowledge driven methodology

The knowledge driven methodology presented in this section is
not intended to act as a stand-alone system architecture. Rather it
is intended to be an extension to well-developed hierarchical,
deliberative architectures such as 4D/RCS [32]. The overall knowl-
edge driven methodology of the system is depicted in Fig. 1.
Although the described architecture is currently used in a simula-
tion environment, its application can be extended to a real
environment. The remainder of this section gives a brief descrip-
tion of the components pertaining to the effort presented in this
paper.

e Use Case Scenarios: At the early stage of assembly, new orders
coming from customers are entered in the system by an
operator via a graphical user interface. The information that
is required in this step is for instance the type of assembly and
the number of products required. This first step is therefore an
attempt to introduce agility in the system with a functionality
that smooths fluctuations in demand.

e Knowledge (OWL/XML): At the next level up, the information

encoded in the Use Case Scenarios is then organized into a
domain independent representation. The Knowledge (OWL/
XML) component contains all the basic information that was
determined to be needed during the evaluation of the Use Case
Scenarios. This component consists of class files and instance
files that describe the environment (Environment), including
the initial (Initial Conditions) and goal (Goal Conditions) states
for the current assembly, and PDDL actions (SOAP). The knowl-
edge is represented in a compact form with knowledge classes
inheriting common attributes from parent classes. The SOAP
knowledge describes aspects of PDDL actions that are required
for the domain under study. The instance files describe the
initial and goal states for the system through the Initial
Conditions file and the Goal Conditions file, respectively. The
initial state file must contain a description of the environment
that is complete enough for a planning system to be able to
create a valid sequence of actions that will achieve the given
goal state. The goal state file only needs to contain information
that is relevant to the end goal of the system.
Since both the OWL and XML implementations of the knowl-
edge representation are file based, real time information
proved to be problematic. In order to solve this problem, an
automatically generated MySQL database has been introduced
as part of the knowledge representation. Different frameworks
(e.g., Jena [33]) are capable to store ontologies in memory,
however, the particularity of a MySQL database is that it allows
information of the environment to be shared between multiple
robots in the case of collaborative kitting.

e Planning: At the next level up, aspects of this knowledge are
automatically extracted and encoded in a form that is opti-
mized for a planning system to utilize. The planning language
used in the knowledge driven system is PDDL. The PDDL input
format consists of two files that specify the domain and the
problem. As shown in Fig. 1, these files are automatically
generated from a set of OWL files. The PDDL Domain file is

Download English Version:

https://daneshyari.com/en/article/413729

Download Persian Version:

https://daneshyari.com/article/413729

Daneshyari.com

https://daneshyari.com/en/article/413729
https://daneshyari.com/article/413729
https://daneshyari.com

