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a b s t r a c t

The dynamic model, particularly with reference to controller design, is an important issue in mechanical
control and design. However, this model is often difficult to achieve in complex multi-closed-loop
mechanisms, such as parallel mechanisms or forging manipulators. A new approach on the dynamic
modeling of a multi closed-chain mechanism in a forging manipulator, which applies screw theory and the
reduced system model, is proposed in this paper. The proposed method not only allows a straightforward
calculation of actuator forces but also obtains the dynamic equation of the multi-closed-loop mechanism
easily. The structure of dynamic model obtained is similar to that of standard Lagrangian formulations, which
can extend vast control strategies developed for serial robots to complex multi-closed-loop mechanisms.
A complex multi-closed-loop mechanism on a forging manipulator is decomposed into several serial
mechanisms or simpler subsystems. The Lagrangian equations associated with each subsystem are directly
derived from the local generalized coordinates of the sub-mechanisms. Jacobian matrices are used to
interpret the differential equations of the sub-mechanisms into the generalized coordinate or the actuated
pairs according to the D’Alembert principle. Hessian matrices are also applied to form a standard Lagrangian
formulation. The screw theory is introduced to overcome the difficulties of solving transformed Jacobian
matrices, thereby simplifying the calculation of the matrices. Computation difficulties of transformation
matrices may decrease considerably by choosing suitable generalized coordinates instead of direct actuator
variables. The full dynamics of the complex multi-closed-loop mechanism in a forging manipulator is
presented. Simulations and experiments illustrate the reliability of the proposed method and the correctness
of the dynamic model of the forging manipulator.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The forging manipulator, whose main task is to hold and
manipulate the work piece in heavy forging, is indispensable for
the improvement of manufacturing ability, forging quality, safety,
efficiency, and so on. With the development of forging automation,
numerous researchers have intensely studied the crucial role that
forging manipulators play in the forging industry [1–7]. A forging
manipulator includes a gripper carrier that is connected to a truck
frame through one or more connected closed-loop kinematic
chains to improve payload capacity. The gripper carrier can be
moved horizontally, vertically, and rotationally in a plane. These
directions are three main motions of a forging manipulator during
forging. Therefore, the main motion mechanism in a forging

manipulator is a complicated 3-DOF multi-closed-loop planar
mechanism (i.e., this mechanism is referred to as “parallel robots”
in robotics literature). The parallel manipulator has grown popular
and has received increasing attention recently because of its
advantageous features such as low weight/load ratio, high rigidity,
and high accuracy [8,9]. The manipulators are characterized by
complex kinematic relations, leading to complex dynamic equa-
tions because dynamics is a natural extension of kinematics.
Therefore, most investigations focus on the kinematic issues of
complex mechanisms, whereas few researches refer to dynamics
modeling and analysis [10]. Unlike open-chain mechanisms, a
well-established motion equation exists in dynamics and robotics
literature. In addition, many control results have been developed.
Deriving an effective dynamic model for controller design is
necessary to ensure that serial counterparts are available for
multi-closed-loop mechanisms [11,12]. The solutions used for the
dynamic modeling of complex manipulators have two basic
approaches, namely Recursive Newton–Euler formulation and
Lagrangian formulation. The Recursive-Euler formulation has poor
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computational efficiency since all internal reaction forces between
bodies are considered, even if they do not apply to the control law
design of the manipulators [13]. Lagrangian method, which is an
energetic approach, may be classified into two groups: direct
Lagrangian and Lagrange–D’Alembert formulation on the reduced
system. Direct lagrangian is usually applied to open-chain robots
or some particular multi-closed-loop mechanisms. In addition,
many serial robot dynamic models are derived based on direct
Lagrangian equations and many control methods have been
developed for the dynamic model in the field of robotics as well.
Lagrange–D’Alembert formulation on the reduced system is used
mostly for the dynamic modeling of the parallel manipulator or
complex multi-closed-loop mechanisms, but the equations are of
sheer complexity and not easy to obtain because explicit relations
between the different coordinates (actuated and passive or non-
actuated) have to be calculated [14,15]. To apply the existing
research achievements of the serial robotic field, deriving multi-
closed chain-manipulator dynamic equations with structures
similar to open-chain manipulator equations is necessary [16–18].
In light of aforementioned reasons, most studies focus on kinematic
and optimization issues on the basis of the kinematic model of
forging manipulators [1,2,19], whereas relatively few researches
refer to the dynamics of multi-DOF and multi-loop mechanisms.
Although several dynamic models on forging manipulator have
been developed, these models aim to achieve an optimal design and
to analyze the complex mechanism instead of implementing and
optimizing the model-based controller [3,4,20]. This research bot-
tleneck obstructs the performance improvement of forging manip-
ulators and the development of forging automation.

Wittenburg introduced the notion of a reduced system [21],
which is a tree system obtained from a multi-closed-loop mechan-
ism by cutting certain joints. The dynamics of the tree system can be
easily obtained through the existing dynamics and robotics litera-
ture. The D’Alembert principle is applied to formulate a transforma-
tion between generalized actuating forces and to obtain the final
dynamic equation of the closed-loop mechanism with a structure
similar to that of standard Lagrangian formulations [16–18,22]. The
generalized actuating force transformation plays a decisive role in
combining the explicit dynamic model of the closed-chain mechan-
ism using the dynamic equations from the tree system. However, the
transformation matrices between generalized actuating forces or
dependent generalized coordinates and independent generalized
coordinates are usually difficult to obtain because the calculation of
a large number of Jacobian and Hessian matrices among indepen-
dent and dependent generalized coordinates is necessary [14]. Given
that multi-closed-loop mechanisms are characterized by complex
kinematics relations, calculating the Jacobian and Hessian matrices
of the complex mechanical system is complex because of the
geometric constraints caused by the multi-closed loop topology
[4]. Therefore, on the basis of the reduced system dynamic method,
obtaining the dynamic model with a standard Lagrangian form for
the complex multi-closed-loop mechanism is difficult.

Many researchers started resorting to advanced mathematical
tools such as Lie group theory and screw theory to solve the
kinematic and dynamic problems of complicated parallel manip-
ulators [13,23–25]. In particular, screw theory has made enormous
progress in the kinematics and dynamics of open or closed chains
[13,25–33]. More than two decades ago, screw theory has been
proved an efficient tool for solving the first-order analysis of
closed chains, that is, kinematic Jacobian. As shown in [26,30],
although screw theory can be applied to the acceleration analysis
of closed chains, the expressions appear to be complicated,
thereby restricting the application of screw theory in obtaining
a dynamic model of multi-closed-loop mechanism in analytical
standard form because dynamics is a natural extension of kine-
matics. Currently, the complicated mechanism dynamic model

represented with a screw form is usually used for mechanism
analysis or numerical simulation [13,25,31]. To the best of our
knowledge, obtaining the analytical dynamic equation of complex
mechanisms with a structure similar to that of standard Lagran-
gian formulations is still unexplored through screw theory.

In this paper, the dynamic equations of a complex multi-
closed-loop mechanism in a forging manipulator are developed
through a novel method that combines screw theory and the
reduced system dynamic method. Screw theory is introduced to
cope with transformation matrices for reduced system on the basis
of the first-order analysis advantage on the kinematics of open
serial and closed chains, which is extending results previously
obtained by authors [13,30,32]. A complex multi-closed-loop
mechanism in a forging manipulator is decomposed into several
serial mechanisms or simpler subsystems on basis of the reduced
system dynamic method. The whole system dynamics is
approached by an harmonious combination of the subsystems’
equations and the transformation matrices according to the
D’Alembert principle. A 3-DOF multi-closed-loop mechanism in a
heavy-duty forging manipulator is taken as a case study to show
the effectiveness of the presented method. Dynamics is validated
by ADAMS simulation and using a small-scale forging manipula-
tor's experiment, respectively.

2. Problem formulation

2.1. Dynamics of rigid bodies

A multi-loop complex mechanism consists of many rigid bodies
and joints. Expected motions are carried out if the rigid bodies and
joints are arranged in an organized interconnection, i.e., only when
rigid bodies or components perform coordinated motions, the
mechanism can complete a given task. At the same time, a multi-
loop mechanism of holonomic constraints can be decomposed into
several serial manipulators by cutting certain joints, i.e., a reduced
system [21].

In the absence of friction and other disturbances, if a complex
mechanism has N DOF, then the standard dynamic model of a
complex mechanism not in contact with the external environment
can be described by the following set of ordinary differential
equations using Lagrangian dynamics [34]:

DðqÞ €qþCðq; _qÞ _qþgðqÞ ¼ τ ð1Þ
where1 qAℜN is the vector of generalized coordinates;
DðqÞAℜN�N denotes the inertia matrix; Cðq; _qÞAℜN�N represents
the Coriolis and centrifugal terms; gðqÞAℜN represents the grav-
itational terms; τAℜN is the vector of generalized force.

Eq. (1) also can be presented as follows:

DðqÞ €qþ _qTHCðqÞ _qþgðqÞ ¼ τ ð2Þ
where HCðqÞAℜN�N�N denotes the Hessian Force matrix for the
mechanism. This matrix is a three-dimensional tensor with
N layers, in which each layer is a N�N matrix.

Similarly, the dynamics of the serial mechanisms from the
reduced system also can be represented by (2). If the ith serial
mechanism is an n0-DOF mechanism, then the dynamic equations
can be written as follows:

DiðqiÞ €qiþ _qT
i HCi

ðqiÞ _qiþgiðqiÞ ¼ ui ð3Þ
where qiAℜn0 is the vector of generalized coordinates of the ith
subsystem or module; DiðqiÞAℜn0�n0 is the n0 � n0 inertia matrix of

1 In the following discussion, ℜ denotes the set of real numbers; ℜN is the
usual N-dimensional vector space over ℜ; ℜN�M and ℜN�M�K denotes the set of all
N�M and N�M�K matrices with real elements, respectively.
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