
Open architecture dynamic manipulator design philosophy (DMD)

Syed Hassan a,b,�, Naveed Anwer b, Zafar Khattak b, Jungwon Yoon a

a School of Mechanical and Aerospace Engineering and ReCAPT, Gyeongsang National University, Jinju, Korea
b Computer Science and IT Department, University of Gujrat, Gujrat, Pakistan

a r t i c l e i n f o

Article history:

Received 15 September 2008

Received in revised form

5 July 2009

Accepted 8 July 2009

Keywords:

Manipulator

Open architecture

Robotics

Dynamic controller

Design philosophy

a b s t r a c t

This paper presents a generic and universal architecture design for robotic manipulators. A flexible

approach is taken to develop the design philosophy throughout, resulting in a hardware architecture

that is portable, can be integrated and enables the implementation of advanced control methods. A

software kernel of management, supervision and control was developed in order to obtain an easy user

interface to the robotic researcher. The application of many such controls has, traditionally, often been

severely restricted in partial commercial robotic systems because of limitations associated with their

controllers; rather than the arms themselves.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Industrial robots are currently employed in a large number of
applications, and are available with a wide range of configura-
tions, drive systems, physical sizes and payloads. However, despite
the perceived wide spread deployment of robots, recent surveys
indicate that the number in service throughout the world are
much less than predicted twenty, or even then, years ago.

In contrast, much academic research has been undertaken in
recent years aimed at improving the performance of robots
using a number of advanced techniques. They have included
model based techniques for predictive and adaptive control, force
and hybrid force position control schemes, and attempts to
introduce intelligent control methods, especially using ANNs
and fuzzy-logic based control Linkens and Nyoungesa [2].

Whilst varying degrees of success have been demonstrated, the
application of many advanced methods has often been severely
restricted in practical commercial robotic systems because of
limitations associated with their controllers, rather than the arms
themselves Kozlowski [3].

In order for the robotic device to perform a given task it is
necessary to control it that is basically, to have the capabilities of,
first, sending specific orders to the manipulator, in terms of
positions or velocities of its final effector, and second, sensing the
real obtained position or velocity. Other sensing capabilities may
be important depending on the application, such as force feed-
back. So, in order to implement a given control algorithm for the

manipulator to solve a task, it is necessary to control its basic
functionalities (moving and sensing) which implies the develop-
ment of a software platform.

2. Existing open architecture controller

The impact that ‘open’ system has had on the computer science
culture has been remarkable.

From a general computing point of view, the term ‘open
architecture’ has been attributed the following definition:

An architecture whose specifications are public; this includes
officially approved standards as well as privately designed
architectures whose specifications are made public by the
designers. The opposite of open is closed or proprietary

This definition is applicable to the general computer science
community as a whole, but the phrase ‘open architecture controller ‘,
which has been partly plagiarized from this definition since the late
1980s Zeng G et al. [4], requires a slightly different definition.

The need for open architecture controllers has arisen because of a
pressing need for more advanced flexible manufacturing system
(FMS) in factory environments Proctor and Albus [21]. The NGC–SO-
SAS establishes a virtual controller infrastructure that integrates
software-based ‘services’ under the aegis of a master controller, and is
designed to provide interoperability, portability, scalability and
interchangeability to a controller Anderson [1]. In Europe, the OSACA
(open system architecture for control within automation) project aims
to define hardware independent reference architecture for a range of
industrial controllers Pritschow [15]. The OSEC project in Japan
following the similar goals of open philosophy developed the

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/rcim

Robotics and Computer-Integrated Manufacturing

0736-5845/$ - see front matter & 2009 Elsevier Ltd. All rights reserved.

doi:10.1016/j.rcim.2009.07.006

� Corresponding author.

E-mail address: wahab_kool@yahoo.com (S. Hassan).

Robotics and Computer-Integrated Manufacturing 26 (2010) 156–161

www.elsevier.com/locate/rcim
dx.doi.org/10.1016/j.rcim.2009.07.006
mailto:wahab_kool@yahoo.com


ARTICLE IN PRESS

seven-tiered reference model the Kasashime et al. [14]. Naturally, each
of these specifications and standards defines an ‘open architecture
controller’ with a slightly different emphasis, but there are common
themes throughout.

The demand for faster manufacturing processes with tighter
quality control standards is pushing the limits of older generation
robots Proctor and Albus [21]. Whilst many robot controllers features
common elements in their hardware (CPUs, for examples the Intel
8088), adding performance upgrades is limited or even impossible.
Even the most well adapted proprietary controllers are falling behind
when compared with other devices in a FMS. To add new
functionality in the controller without restoring or going for reverse
engineering, the only option is using a communication port that will
allow real- time path modification of the robot’s trajectory. The slow
communication rates manufacturers usually provide with these
interfaces renders it impossible to effectively make compensations
in a sensor based control loop with typical sampling requirements up
to 1 kHz Proctor and Albus [21]. This limitation has negatively affected
several attempts to implement sensor based control with a
proprietary controller Bicker et al. [16].

The ESA’s CDM utilizes a functional reference model (FRM) for the
activities of robot control systems. The top hierarchy, the MISSION
layer, attempts to describe the activities that the robot is responsible
for very abstract terms, for example SERVICE a satellite, and REPAIR a
platform. The TASK layer decomposes the high level activities into
tasks, which are defined as the highest level of activity that can be
performed on a single subject/object (OPEN a door, WELD a seam).

The NEXUS open software system has a similar methodology,
whereby modules are defined by the services they provide
Fern�andez-Madrigal and Gonz�alez [17]. Data and event flows
between different modules are handled by an Internal Commu-
nications Manager (ICM) and an Architecture Information
Manager (AIM). Zhou and deSilva have retrofitted a PUMA 560
with an open-structure controller Zhou and deSilva [20]. The host
computer is an intel 80486 processor with AT system bus. This
choice of OS is not specified, but the real-time support provides a
GUI. Brambones and Etxebarria have reverse engineered a
controller for the Tecquipment Ltd. MA2000 laboratory manip-
ulator Barambones and Etxebarria [18]. This is a six-DOF
manipulator actuated by DC motors with potentiometer position
feedback. The existing controllers surveyed had a drawback with
controller that when operates in free motion, the system is
controlled in open loop. Precompiled code cannot be modified and
to link more libraries the software requires updating which again
push them to closed end besides the controller is still an open
architecture.

In general, robot controllers can be broadly classified into three
different types Fu et al. [6]:

(a) Proprietary: the controller structure is effectively closed.
Integration of external or new hardware (including sensors)
is either very difficult or impossible.

(b) Hybrid: the majority of the system is closed (control laws, etc.)
but some aspects of the system remain open. It is possible to
add new devices such as sensors.

(c) Open: the controller design is completely available to be
changed or modified by a user. The hardware and software
structures can be changed such that all elements (servo laws,
sensors, GUIs) can be modified without difficulty.

3. Enabling technologies

When considering the implementation of an open architecture
controller based on the architectural specifications and models
discussed in Section 2, a particular hardware architectural must

be committed to follow open standards and open source code. The
high level, somewhat abstract architectural specification docu-
ments have lead developers of prototype systems to choose the
following enabling technologies Fu et al. [6]; James and Graham
[7]:

A. Standard operating system (OS) like DOS or Windows.
B. Non-proprietary hardware such as PC’s or SUN workstations.
C. Standard bus systems such as PCI or VME.
D. Use of standard control languages such as C or C++ or Java.

4. OS for open controllers

The operating system provides a software interface to enable
the user to run application program and performs tasks such as
port I/O, updating the screen display and communicating with
peripheral device. In general, the tasks that an open architecture
controller has to manage can be split into two different categories:

A. Direct machine control: this encompasses drive interfacing,
signal conditioning, trajectory generation, servo-control (or
other joint control algorithms), sensor/transducer interfacing
and coordinating asynchronous events.

B. Non-machine control: this encompasses tasks such as inter-
preting instruction sequences (CNC codes/robot program files),
higher level communications to other systems and providing
user interfaces.

We can also classify these two sets of task into real-time and
non-real-time. The definition of real-time, which relates to the
computing control systems, is given accurately by Microsoft
Corporation [8]:

A real time system is one in which the correctness of the
computation not only depends upon the logical correctness of
the computation, but also upon the time at which the result is
produced. If the timing constraints of the system are not met,
system failure is said to have occurred.

5. Motion controllers

From the wide variety of industrial motor control equipment
available a servo controller of this nature requires a minimum, for
each axis under control, 0–10 VDC analogue output channel and
an encoder input channel Perry and Wolf [9]. A wide variety of
products exist, each with differing feature and option.

The PMAC (programmable multi-axis controller) card manu-
factured by Delta Tau Systems is a PC expansion card for most
common local bus systems (PCI, VME, etc.) and is equipped with
onboard A/D and D/A converters, digital I/O, encoder inputs and
PLC emulation. Many accessories are available to provide further
expansion. It has a Motorola DSP 56001 Digital Signal Processor
running at a clock speed of 20 MHz (standard), and up to 60 MHz
(enhanced). It is highly flexible system that allows many advanced
custom features to be incorporated Lee and Lee [13]. A diverse
array of options and control features is available as standard,
making the card highly suited to research, robotics and machine
tool applications.

Communications between the host processor and the PMAC
servo controller take place via the common system bus,
using ASCII character format. This is generally the case for these
types of controller. The interpretation of the meaning of the

S. Hassan et al. / Robotics and Computer-Integrated Manufacturing 26 (2010) 156–161 157



Download	English	Version:

https://daneshyari.com/en/article/414101

Download	Persian	Version:

https://daneshyari.com/article/414101

Daneshyari.com

https://daneshyari.com/en/article/414101
https://daneshyari.com/article/414101
https://daneshyari.com/

