analesdepediatría

www.analesdepediatria.org

ORIGINAL

Esclerosis tuberosa: caracterización clínica e intento de correlación fenotipo/genotipo

- T. Monteiro, C. Garrido, S. Pina, R. Chorão, I. Carrilho,
- S. Figueiroa, M. Santos y T. Temudo*

Centro Materno-Infantil do Norte, Porto, Portugal

Recibido el 17 de septiembre de 2013; aceptado el 25 de marzo de 2014 Disponible en Internet el 22 de julio de 2014

PALABRAS CLAVE

Alteraciones del comportamiento; Esclerosis tuberosa; Déficit cognitivo; Fenotipo; Genotipo; Epilepsia; Resonancia magnética cerebral

Resumen

Introducción: La esclerosis tuberosa (ET) es una enfermedad de afectación multisistémica y gran variabilidad fenotípica. Están identificados 2 genes involved en la génesis de la enfermedad: TSC1 y TSC2.

Objetivos: Caracterizar clínicamente a los pacientes con ET seguidos en Neurología Pediátrica de un hospital de tercer nivel durante los últimos 10 años y correlacionar el genotipo con la gravedad de la clínica neurológica y los estudios de imagen.

Pacientes y métodos: Estudio retrospectivo descriptivo, mediante consulta de la historia clínica y evaluación de las resonancias magnéticas (RM) de pacientes con ET.

Resultados: Se estudiaron 35 casos, con una mediana de edad, al diagnóstico, de 10 meses. En el 91,4% se registraron crisis epilépticas, con un predominio de espasmos epilépticos a la presentación.

Más del 50% tenía deterioro cognitivo y el 49% trastornos de conducta.

Se sometieron a estudio genético 24 niños con predominio de mutaciones TSC2 (58,3%). De los 11 casos de epilepsia refractaria, 6 tenían mutación del gen TSC2. De los 8 pacientes con déficit cognitivo moderado a grave, se identificaron 5 mutaciones TSC2.

Se revisaron 26 RM y en el 76,9% se observó una afectación completa de los lóbulos cerebrales, lo que refleja una gran cantidad de lesiones. De los enfermos con mutaciones TSC2 y RM realizada, todos tenían alta carga de lesión y 5 epilepsia refractaria.

Discusión: En nuestra muestra, nos encontramos con un alto porcentaje de mutaciones en el gen TSC2. Esta mutación está asociada a un peor pronóstico neurológico, con crisis más farmacorresistentes y un atraso cognitivo más severo.

© 2013 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.

Correo electrónico: teresatemudo@hotmail.com (T. Temudo).

 ^{*} Autor para correspondencia.

290 T. Monteiro et al

KEYWORDS

Changes in behavior; Tuberous sclerosis; Cognitive deficit; Phenotype; Genotype; Epilepsy; Brain magnetic resonance imaging

Tuberous sclerosis: Clinical characteristics and their relationship to genotype/phenotype

Abstract

Introduction: Tuberous sclerosis (TS) is an inherited disorder with multisystemic involvement and a high phenotypic variability. There are two genes that cause this condition: TSC1 and TSC2. Objectives: Our goal was to clinically characterize patients with TS followed up in the Pediatric Neurology Clinic of a tertiary hospital during the last 10 years, and correlate the genotype with the severity of neurological manifestations and imaging studies.

Patients and methods: Retrospective analysis of patients with TS, including review of medical records and available MRI imaging.

Results: We studied 35 cases with a median age at diagnosis of ten months. Seizures were the first manifestation in 91.4% of cases, with a predominance of epileptic spasms. Over 50% had cognitive impairment and 49% behavioral disorders.

A genetic study was performed on 24 children, and TSC2 mutations identified in 58.3% of them. Of the 11 cases of refractory epilepsy, six had the TSC2 gene mutation. In the group of eight patients with moderate/severe cognitive deficits, five had TSC2 mutations.

We reviewed 26 MRI scans, in which it was observed that 76.9% had diffuse involvement of cerebral lobes, which reflects a greater burden of injury. Of the patients who had an MRI scan performed and had TSC2 mutations, all had a high tuber load, and5 of them had refractory epilepsy.

Discussion: In our sample we observe a high percentage of mutations in the TSC2 gene. This mutation carries a worse neurological prognosis, with drug-resistant epilepsy and a more severe cognitive impairment.

© 2013 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

Introducción

La esclerosis tuberosa (ET) es un síndrome neurocutáneo multisistémico. Las alteraciones observadas resultan de una disfunción de la diferenciación, proliferación y migración celulares en las primeras etapas del desarrollo fetal¹.

La ET tiene una herencia autosómica dominante, con una incidencia de aproximadamente uno por cada 5.000 a 10.000 nacimientos². Actualmente, se han identificado mutaciones en 2 genes implicados en la génesis de la enfermedad: TSC1 (cromosoma 9q34) y TSC2 (cromosoma 16p13.3). Solo el 7-37% tienen antecedentes familiares positivos, siendo que la mayoría (65-75%) corresponden a mutaciones «de novo»³. Presentan una gran variabilidad de expresión fenotípica, edad de aparición, signos, síntomas y gravedad.

En el 60-89% de los enfermos que cumplen los criterios de diagnóstico para ET se identifica una mutación causante de la enfermedad, siendo que se estima que alrededor del 50% corresponden a mutaciones en TSC2 y el 17% a mutaciones en TSC1⁴⁻⁶.

La ET se caracteriza por la aparición de tumores benignos en múltiples órganos⁷. Además, hay un aumento del riesgo de malignidad⁸.

El diagnóstico se define únicamente por criterios clínicos (tabla I). Se clasifica como *ET definitiva* si están presentes 2 criterios mayores o uno mayor y 2 menores; *ET probable* si se registran uno mayor y uno menor, y *ET posible* cuando se observa uno mayor o 2 o más menores, sin criterios mayores. La evaluación genética es útil para estudios de la familia o de confirmación de posibles o probables casos de ET.

Los síntomas neurológicos, presentes en el 85% de los casos, son la principal causa de morbimortalidad³. La epilepsia y el retraso cognitivo están comúnmente asociados a lesiones cerebrales, incluyendo hamartomas glioneuronales (también llamados tuberomas), lesiones de la sustancia blanca y astrocitomas de células gigantes subependimarios⁹.

La epilepsia aparece generalmente en el primer año de vida y una forma de presentación frecuente son los espasmos epilépticos (36-96%)¹⁰. El número y, en particular, el volumen total ocupado por hamartomas glioneuronales están relacionados con la presencia de disfunción cerebral grave (epilepsia refractaria y/o deterioro cognitivo moderado a grave)^{1,11}. También se ha demostrado la asociación entre el grado de gravedad de la epilepsia y la presencia de tuberomas corticales con aspecto quístico¹².

Se estima que el 50% de los enfermos tienen afectación cognitiva y su gravedad se asocia a los antecedentes de espasmos epilépticos o epilepsia refractaria y al número y el volumen ocupado por los hamartomas glioneuronales¹³.

Los problemas de conducta están presentes en un 40-90% de los pacientes con ET. Aunque los cambios comportamentales puedan ocurrir independientemente del nivel cognitivo, se verifica que la discapacidad intelectual y la elevada frecuencia de crisis epilépticas son factores de riesgo para la existencia de trastornos de conducta¹⁴.

Las manifestaciones dermatológicas pueden ocurrir en el 81-95% de los casos de ET, siendo las más comunes: manchas hipopigmentadas, angiofibromas, fibromas ungueales, placas de Shagreen, placas fibrosas^{10,15}. No existe un riesgo

Download English Version:

https://daneshyari.com/en/article/4141301

Download Persian Version:

https://daneshyari.com/article/4141301

<u>Daneshyari.com</u>