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It is known that the problem of computing (Steiner) spanners on a set of n points has an 
�(n logn) lower bound. However, the proof is based on an example of points on the real 
line. Therefore, if we assume that the points belong to the plane or higher dimensions, and 
moreover, they are in general position, then the lower bound example does not work.
In this paper, we show that the complexity of computing geometric spanners, possibly 
containing Steiner points, for a set of n points in d-dimensional Euclidean space (Rd) that 
are in general position is �(n logn), in the algebraic computation tree model. To this end, 
we reduce the spanner construction to a variant of the closest pair problem which has an 
�(n logn) lower bound.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let P ⊂ R
d be a set of n points. Given a real number t > 1, we say that the Euclidean graph G(P , E), i.e. an edge-weighted 

graph such that the weight of each edge is the Euclidean distance between its endpoints, is a geometric t-spanner of P if 
for each pair of points u, v ∈ P , there exists a path between u and v in G with length at most t × |uv|. The length of a 
path is defined as the sum of the lengths of the edges on the path and |uv| denotes the Euclidean distance between u
and v . We call such a path, if it exists, a t-path between u and v . If the vertex set of the graph G(V , E) is a superset of P
and the spanner property holds between all pairs of points from P , then we call G a Steiner spanner of P . Note that when 
constructing Steiner t-spanners, we can add extra vertices to the graph, and we do not need any condition on path lengths 
between Steiner points and other (Steiner or non-Steiner) points, so the problem of constructing Steiner spanners is easier 
than the problem of constructing spanners.

Geometric spanners have several applications in theory and practice and have been the subject of several papers in the 
last decades [4]. Several algorithms are known that, given a set P of n points in Rd , d is a constant, and a constant t > 1, 
construct a sparse t-spanner of P in O(n log n) time. Several sparseness measures have been considered like linear number 
of edges, weight proportional to the weight of the minimum spanning tree and some other properties.

One of the major questions in the field was the possibility to improve the time complexity of previous spanner construc-
tion algorithms, i.e., constructing spanners in o(n log n) time or showing that the problem has an �(n log n) time complexity.

In 2001, Chen, Das and Smid [3] gave a lower bound on the time complexity for constructing geometric Steiner spanners, 
for a set of n points in R

d , see also [4, Section 3.4]. Chen, Das and Smid [3] showed that the time complexity of the problem 
in the algebraic computation tree model [1,4,5] is �(n log n). Their lower bound proof is given in the case that points are 
from R. In the case that the input points are not necessarily distinct, they reduced the element uniqueness problem to 
the problem of constructing Steiner spanners. Since the element uniqueness problem has �(n log n) complexity, the same 
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holds for computing Steiner spanners. When we know that the points in the input point set are pairwise distinct, the above 
argument does not work. So, in the same paper, Chen et al. also gave a direct proof of �(n log n) lower bound in this case. 
The proof, again, was based on a point set from R. Therefore, their argument does not work in higher dimensions, in the 
case one assumes that the points are in general position. This is one of the assumptions that we normally assume an input 
point set satisfies when we study a problem in computational geometry.

A set P of points in Rd is in general position, if no d + 1 points of P lie on a (d − 1)-dimensional subspace of R
d . For 

d = 2 it means that no three points lie on a line and for d = 3, a set of points is in general position if no four points lie in 
a plane, i.e. 2-dimensional subspace of Rd . We have the following, slightly different, definition of points in general position 
in the literature: a point set in Rd is in general position, if for each k between 3 and d + 1, no k points on the point set are 
contained in a (k − 2)-dimensional subspace of R

d . These two definitions are equivalent because we can easily grow any 
set of k points (k < d + 1) in (k − 2)-dimensional subspace to a set of d + 1 points in (d − 1)-dimensional subspace of Rd

by adding arbitrary points to the point set.
Since the proof of Chen et al. [3] does not work if one assumes that the input point set is from Rd (d > 1) and it is in 

general position, they posed the following conjecture.

Conjecture 1. (See [3].) Let d ≥ 2 be an integer constant. In the algebraic computation tree model, any algorithm that, given a set P of 
n points in Rd that are in general position, and a real number t > 1, constructs a Steiner t-spanner for P , takes �(n logn) time in the 
worst case.

In this paper, we propose a reduction which gives a positive answer to the conjecture. The organization of the paper is 
as follows: we start, in Section 2, with describing a variant of the element uniqueness problem, and we next reduce the 
problem of computing a geometric Steiner spanner on a set of points in Rd to this problem. At the end of Section 2, we 
introduce a variant of the closest pair problem which has an �(n log n) lower bound. Then, in Section 3, we reduce the 
problem of computing a geometric Steiner spanner on a set of points in general position to this problem which completes 
the proof.

Throughout the paper, we assume that points come from Rd , where d is a constant and also t > 1 is a constant.

2. A reduction from the extended element uniqueness problem

The (standard) element uniqueness problem is a decision problem that is defined as follows: Given n real numbers 
x1, x2, . . . , xn , decide whether they are pairwise distinct. It has a lower bound of �(n log n) time complexity in the algebraic 
decision tree model [1,4,5]. We consider the element uniqueness problem in the plane (or higher dimensions), and we show 
that this problem has an �(n log n) lower bound in the algebraic computation tree model, too. Then, we use this problem 
to give an �(n log n) lower bound in the algebraic computation tree model for computing (Steiner) spanners on a set of n
points (in general position) in R

d .
Now, we show that the element uniqueness problem also has an �(n log n) lower bound when the points come from 

d-dimensional Euclidean space. This can be done by a simple mapping which maps each real number to a point in 
d-dimensional space which keeps uniqueness. This show that any algorithm for solving the element uniqueness prob-
lem in Rd can be used to solve the (standard) element uniqueness problem on R. The proof of the following theorem 
is straight-forward, but for the sake of completeness we give the proof, too.

Theorem 1. The following problem has an �(n logn) time complexity in the algebraic computation tree model:

• Extended element uniqueness problem: given a set of n points in d-dimensional Euclidean space (Rd), decide whether they 
are pairwise distinct.

Proof. Let A be an arbitrary algebraic computation tree algorithm that solves the extended element uniqueness problem, 
in Rd , and let T (n) be its time complexity. The following algebraic decision tree algorithm solves the element uniqueness 
problem on an input consisting of n real numbers x1, x2, . . . , xn . The algorithm B first maps each xi to Rd using the following 
mapping: x �−→ (x, x, . . . , x). Hence, B maps each xi to pi = (xi, . . . , xi) (clearly, if i �= j, then we have xi = x j if and only if 
pi = p j). Then, B uses A to decide that the n points p1, . . . , pn are pairwise distinct.

Algorithm B has time complexity T (n) + O(nd) (d is a constant). On the other hand, by the time complexity of the 
element uniqueness problem, Algorithm B has an �(n log n) lower bound. It follows that T (n) = �(n log n). �

Let A be any algorithm that, given a set P of n points p1, . . . , pn in Rd and a real number t > 1, constructs a Steiner 
t-spanner G for P . We assume that the number of edges in the generated spanner is o(n log n) because any algorithm that 
computes a spanner with �(n log n) edges clearly needs �(n log n) time. Also, we assume that the algorithm attaches a label 
to each vertex of the generated graph such that we can distinguish between original points and Steiner points.

We reduce the problem of computing a Steiner t-spanner to the extended element uniqueness problem in the same way 
as in [3] (see also [4, Section 3.4]): First, we use A to construct a Steiner t-spanner G(V , E) for P . Let G ′(V , E ′) be the 
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