
Computational Geometry 53 (2016) 27–35

Contents lists available at ScienceDirect

Computational Geometry: Theory and 

Applications
www.elsevier.com/locate/comgeo

Tighter estimates for ε-nets for disks

Norbert Bus a, Shashwat Garg b, Nabil H. Mustafa a,∗,1, Saurabh Ray c

a Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, Equipe A3SI, ESIEE Paris, France
b IIT Delhi, India
c Computer Science, New York University, Abu Dhabi, United Arab Emirates

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 December 2014
Accepted 20 December 2015
Available online 29 December 2015

Keywords:
Epsilon nets
Delaunay triangulations
Disks
Hitting sets

The geometric hitting set problem is one of the basic geometric combinatorial optimization 
problems: given a set P of points, and a set D of geometric objects in the plane, 
the goal is to compute a small-sized subset of P that hits all objects in D. In 1994, 
Bronnimann and Goodrich [5] made an important connection of this problem to the size of 
fundamental combinatorial structures called ε-nets, showing that small-sized ε-nets imply 
approximation algorithms with correspondingly small approximation ratios. Very recently, 
Agarwal and Pan [2] showed that their scheme can be implemented in near-linear time 
for disks in the plane. Altogether this gives O (1)-factor approximation algorithms in Õ (n)

time for hitting sets for disks in the plane.
This constant factor depends on the sizes of ε-nets for disks; unfortunately, the current 
state-of-the-art bounds are large – at least 24/ε and most likely larger than 40/ε. Thus 
the approximation factor of the Agarwal and Pan algorithm ends up being more than 40. 
The best lower-bound is 2/ε, which follows from the Pach–Woeginger construction [32]
for halfplanes in two dimensions. Thus there is a large gap between the best-known 
upper and lower bounds. Besides being of independent interest, finding precise bounds 
is important since this immediately implies an improved linear-time algorithm for the 
hitting-set problem.
The main goal of this paper is to improve the upper-bound to 13.4/ε for disks in the plane. 
The proof is constructive, giving a simple algorithm that uses only Delaunay triangulations. 
We have implemented the algorithm, which is available as a public open-source module. 
Experimental results show that the sizes of ε-nets for a variety of data-sets are lower, 
around 9/ε.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The minimum hitting set problem is one of the most fundamental combinatorial optimization problems: given a range 
space (P , D) consisting of a set P and a set D of subsets of P called the ranges, the task is to compute the smallest subset 
Q ⊆ P that has a non-empty intersection with each of the ranges in D. This problem is strongly NP-hard. If there are no 
restrictions on the set system D, then it is known that it is NP-hard to approximate the minimum hitting set within a 
logarithmic factor of the optimal [34]. The problem is NP-complete even for the case where each range has exactly two 
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points since this problem is equivalent to the vertex cover problem which is known to be NP-complete [22,18]. A natural 
occurrence of the hitting set problem occurs when the range space D is derived from geometry – e.g., given a set P of 
n points in R2, and a set D of m triangles containing points of P , compute the minimum-sized subset of P that hits 
all the triangles in D. Unfortunately, for most natural geometric range spaces, computing the minimum-sized hitting set 
remains NP-hard. For example, even the (relatively) simple case where D is a set of unit disks in the plane is strongly 
NP-hard [21]. Therefore fast algorithms for computing provably good approximate hitting sets for geometric range spaces 
have been intensively studied for the past three decades (e.g., see the two recent PhD theses on this topic [16,17]).

Computing hitting sets for disks in the plane has been the subject of a long line of research. The case when all 
the disks have the same radius is easier, and has been studied in a series of works: Călinescu et al. [8] proposed a 
108-approximation algorithm, which was subsequently improved by Ambhul et al. [3] to 72. Carmi et al. [9] further im-
proved that to a 38-approximation algorithm, though with the running time of O (n6). Claude et al. [13] were able to 
achieve a 22-approximation algorithm running in time O (n6). More recently Fraser et al. [14] presented a 18-approximation 
algorithm in time O (n2). Mustafa et al. [28] showed a QPTAS for the dual problem of covering points by weighted disks and 
pseudo-disks in the plane.

So far, besides ad-hoc approaches, there are two systematic lines along which all progress on the hitting-set problem for 
geometric ranges has relied on: rounding via ε-nets, and local-search. The local-search approach starts with any hitting set 
S ⊆ P , and repeatedly decreases the size of S , if possible, by replacing k points of S with ≤ k − 1 points of P \ S . Call such 
an algorithm a k-local search algorithm. It has been shown [30] that a k-local search algorithm for the hitting set problem 
for disks in the plane gives a PTAS. Unfortunately the running time of their algorithm to compute a (1 + ε)-approximation 
is O (nO (1/ε2)). Very recently Bus et al. [6] were able to improve the analysis and algorithm of the local-search approach 
to design a 8-approximation running in time O (n2.33). However, at this moment, a near-linear time algorithm based on 
local-search seems beyond reach. We currently do not even know how to compute the most trivial case, namely when 
k = 1, of local-search in near-linear time: given the set of disks D , and a set of points P , compute a minimal hitting set in 
P of D .

Rounding via ε-nets Given a range space (P , D) and a parameter ε > 0, an ε-net is a subset S ⊆ P such that D ∩ S �= ∅
for all D ∈ D with |D ∩ P | ≥ εn. The famous ε-net theorem of Haussler and Welzl [20] states that for range spaces with 
VC-dimension d, there exists an ε-net of size O (d/ε log d/ε); this bound was later improved to O (d/ε log 1/ε) and which 
was shown to be optimal in general [23]. Sometimes, weighted versions of the problem are considered in which each p ∈ P
has some positive weight associated with it so that the total weight of all elements of P is 1. The weight of each range is 
the sum of the weights of the elements in it. The aim is to hit all ranges with weight more than ε . The condition of having 
finite V C-dimension is satisfied by many geometric set systems: disks, half-spaces, k-sided polytopes, r-admissible set of 
regions etc. in Rd . For certain range spaces, one can further improve the bound of the ε-net theorem [36,10,12,29,24,35,31]. 
An important case is ε-net for disks in the plane, for which there are several proofs showing the existence of O (1/ε)-sized 
nets [33].

In 1994, Bronnimann and Goodrich [5] proved the following interesting connection between the hitting-set problem, and 
ε-nets: let (P , D) be a range-space for which we want to compute a minimum hitting set. If one can compute an ε-net of 
size c/ε for the ε-net problem for (P , D) in polynomial time, then one can compute a hitting set of size at most c · Opt for 
(P , D), where Opt is the size of the optimal (smallest) hitting set, in polynomial time. A shorter, simpler proof was given 
by Even et al. [15]. Both these proofs construct an assignment of weights to points in P such that the total weight of each 
range D ∈ D (i.e., the sum of the weights of the points in D) is at least (1/Opt)-th fraction of the total weight. Then a 
(1/Opt)-net with these weights is a hitting set. Until very recently, the best such rounding algorithms had running times of 
�(n2), and it had been a long-standing open problem to compute a O (1)-approximation to the hitting-set problem for disks 
in the plane in near-linear time. In a recent break-through, Agarwal and Pan [2] presented an algorithm that is able to do 
the required rounding efficiently for a broad set of geometric objects. In particular, they are able to get the first near-linear 
algorithm for computing O (1)-approximations for hitting sets for disks.

Bounds on ε-nets The result of Agarwal and Pan [2] opens the way, for the first time, for near linear-time algorithms for 
the geometric hitting set problem. The catch is that the approximation factor depends on the sizes of ε-nets for disks; 
despite over seven different proofs of O (1/ε)-sized ε-nets for disks, the precise bounds are not very encouraging. The 
paper containing the earliest proof, Matousek et al. [27], was over twenty-two years ago and thus summarized their result:

“Note that in principle the ε-net construction presented in this paper can be transformed into a deterministic algorithm that runs in 
polynomial time, O (n3) at worst. However, we certainly would not advocate this algorithm as being practical. We find the resulting 
constant of proportionality also not particularly flattering.” [27]

So far, the best constants for the ε-nets come from the proofs in [33] and [19]. Denote by f (α) the best known bound 
on the size of an α-net for lower halfspaces in R3. A lifting of the problem of disks to R3 gives an ε-net problem with 
lower halfspaces in R

3. The former paper constructs 1
4 -nets for 4/ε independent sub-problems, resulting in ε-nets of size 

4
ε f ( 1

4 ) for halfspaces in R
3. The latter paper presents five proofs for the existence of linear size ε-nets for halfspaces in R

3. 
The best constant for disks is obtained by using their first proof, obtaining a bound of 4

ε f (α) where α < 1
3 . Thus, by using 



Download English Version:

https://daneshyari.com/en/article/414156

Download Persian Version:

https://daneshyari.com/article/414156

Daneshyari.com

https://daneshyari.com/en/article/414156
https://daneshyari.com/article/414156
https://daneshyari.com

