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We initiate the study of the following problem: Given a non-planar graph G and a planar 
subgraph S of G, does there exist a straight-line drawing � of G in the plane such that the edges 
of S are not crossed in � by any edge of G? We give positive and negative results for different 
kinds of connected spanning subgraphs S of G . Moreover, in order to enlarge the subset of 
instances that admit a solution, we consider the possibility of bending the edges of G not 
in S; in this setting we discuss different trade-offs between the number of bends and the 
required drawing area.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many papers in graph drawing address the problem of computing drawings of non-planar graphs with the goal of 
mitigating the negative effect that edge crossings have on the readability of the drawing. Several of these papers describe 
crossing minimization methods, which are effective and computationally feasible for relatively small and sparse graphs 
(see [9] for a survey). Other papers study how non-planar graphs can be drawn such that the “crossing complexity” of 
the drawing is somewhat controlled, either in the number or in the type of crossings. They include the study of k-planar 
drawings, in which each edge is crossed at most k times (see, e.g., [8,14,15,18,21,26,30]), of k-quasi planar drawings, in 
which no k pairwise crossing edges exist (see, e.g., [1,2,13,19,29,33]), and of large angle crossing drawings, in which any 
two crossing edges form a sufficiently large angle (see [17] for a survey). Most of these drawings exist only for sparse 
graphs.
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In this paper we introduce a new graph drawing problem concerned with the drawing of non-planar graphs. Namely: 
Given a non-planar graph G and a planar subgraph S of G, decide whether G admits a drawing � such that (in �) the edges of S are 
not crossed by any edge of G. Compute � if it exists.

Besides its intrinsic theoretical interest, this problem is also of practical relevance in many application domains. Indeed, 
distinct groups of edges in a graph may have different semantics, and a group can be more important than another for 
some applications; in this case a visual interface might attempt to display more important edges without intersections. 
Furthermore, the user could benefit from a layout in which a connected spanning subgraph is drawn crossing free, since it 
would support the user to quickly recognize paths between any two vertices, while keeping the other edges of the graph 
visible.

Please note that the problem of recognizing specific types of subgraphs that are not self-crossing (or that have few 
crossings) in a given drawing �, has been previously studied (see, e.g., [23,25,28,31]). This problem, which turns out to be 
NP-hard for most different kinds of instances, is also very different from our problem. Indeed, in our setting the drawing is 
not the input, but the output of the problem. Also, we require that the given subgraph S is not crossed by any edge of the 
graph, not only by its own edges.

In this paper we concentrate on the case in which S is a connected spanning subgraph of G and consider both straight-
line and polyline drawings of G . Namely:

(i) In the straight-line drawing setting we prove that if S is any given spanning spider or caterpillar, then a drawing 
of G where S is crossing free always exists; such a drawing can be computed in linear time and requires polynomial 
area (Section 3.1), although our construction for caterpillars does not compute integer coordinates. We also show that this 
positive result cannot be extended to any spanning tree, but we describe a large family of spanning trees that always admit 
a solution, and we observe that any graph G contains such a spanning tree; unfortunately, our drawing technique for this 
family of trees may require exponential area. Finally, we characterize the instances 〈G, S〉 that admit a solution when S is 
a triconnected spanning subgraph, and we provide a polynomial-time testing and drawing algorithm, whose layouts have 
polynomial area (Section 3.2).

(ii) We investigate polyline drawings where only the edges of G not in S are allowed to bend. In this setting, we show that 
all spanning trees can be realized without crossings in a drawing of G of polynomial area, and we describe efficient algo-
rithms that provide different trade-offs between the number of bends per edge and the required drawing area (Section 4). 
Also, we consider the case in which S is any given biconnected spanning subgraph. In this case, we provide a characteriza-
tion of the positive instances, which yields drawings with polynomial area, if only one bend per edge is allowed.

We finally remark that the study of our problem has been receiving some interest in the graph drawing community. 
In particular, Schaefer proved that given a graph G and a planar subgraph S of G , testing whether there exists a polyline 
drawing of G where the edges of S are never crossed can be done in polynomial time [32]. This result was shortly afterwards 
improved to linear time in a work by Da Lozzo and Rutter [10], who studied this problem in the framework of streamed 
graph drawing. In these two works, differently from ours, there is no restriction on the number of bends per edge and the 
edges of S are not required to be drawn as straight-line segments.

In Section 2 we give some preliminary definitions that will be used in the rest of the paper, while in Section 5 we 
discuss conclusions and open problems deriving from our work.

2. Preliminaries and definitions

We assume familiarity with basic concepts of graph drawing and planarity (see, e.g., [12]). Let G(V , E) be a graph and 
let � be a drawing of G in the plane. If all vertices and edge bends of � have integer coordinates, then � is a grid drawing
of G , and the area of � is the area of the minimum bounding box of �. We recall that the minimum bounding box of a 
drawing � is the rectangle of minimum area enclosing �. If � is not on an integer grid, we scale it in order to guarantee the 
same resolution rule of a grid drawing; namely we expect that the minimum Euclidean distance between any two points 
on which either vertices or bends of � are drawn is at least of one unit. Under this resolution rule, we define the area of 
the drawing as the area of the minimum bounding box of �.

Let G(V , E) be a graph and let S(V , W ), W ⊆ E , be a spanning subgraph of G . A straight-line drawing � of G such 
that S is crossing-free in � (i.e., such that crossings occur only between edges of E \ W ) is called a straight-line compatible 
drawing of 〈G, S〉. If each edge of E \ W has at most k bends in � (but still S is drawn straight-line and crossing-free in �), 
� is called a k-bend compatible drawing of 〈G, S〉.

If S is a rooted spanning tree of G such that every edge of G not in S connects either vertices at the same level of S or 
vertices that are on consecutive levels, then we say that S is a proper level spanning tree of G .

A star is a tree T (V , E) such that all its vertices but one have degree one, that is, V = {u, v1, v2, . . . , vk} and E =
{(u, v1), (u, v2), . . . , (u, vk)}; any subdivision of T (including T ), is a spider: vertex u is the center of the spider and each 
path from u to vi is a leg of the spider. A caterpillar is a tree such that removing all its leaves (and their incident edges) 
results in a path, which is called the spine of the caterpillar. The one-degree vertices attached to a spine vertex v are called 
the leaves of v .

In the remainder of the paper we implicitly assume that G is always a connected graph (if the graph is not connected, 
our results apply for any connected component).
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